深圳先进电子材料国际创新研究院(二期工程)建设项目竣工环境保护验收监测报告表

建设单位: 深圳先进电子材料国际创新研究院

编制单位:深圳中科环保产业发展有限公司

2025年06月

建设单位法人代表:

编制单位法人代表:

项目负责人:

填 报 人:

(签字)

(签字)

建设单	位。	深圳战	进电	经	才料国	际
	1	-61	7	The		

创新研究院(盖章)

电话:

邮编: 518100

地址:深圳市宝安区福永街道龙王

庙工业区

编制单位:深圳中科环保产业发展

有限公司(盖章)

电话:

邮编: 518020

地址:深圳市罗湖区东晓街道东晓

社区太白路 3031 号中冠商务大厦

503

表一 项目基本情况

建设项目名称	深圳先进电子材料国际创新研究院(二期工程)建设项目竣工环境保护验收							
建设单位名称	深圳先进电子材料国际创新研究院							
建设项目性质	新建□ 扌	广建☑ 技改建□	迁建					
建设地点	深圳市宝安区广深高速与 龙王庙工业区中1栋、3板 和C栋宿	东、4 栋、8 栋厂房	邮编	518100				
主要建设内容	绝缘胶膜、纳米银、纳米银 封装、电子封装用胶粘剂 建设废水		常规电	子专用材料,配套				
设计建设能力	绝缘胶膜38400m/a、纳米学 圆级扇出型封装4000片/年 粘剂(底部:		000片/年	F、电子封装用胶				
实际建设能 力	Ė	5环评设计基本一致	•					
环评时间	2024年05月	开工时间		2024年06月				
调试时间	2025年03月	验收现场监测时 间		25年04月07日~ 25年05月28日				
环评报告表 审批部门	深圳市生态环境局宝安 管理局	环评报告表编制 单位	深圳中	中科环保产业发展 有限公司				
环保设施设 计单位	深圳先进电子材料国际 创新研究院	环保设施施工单 位		先进电子材料国际 创新研究院				
概算总投资	8000万元	其中环保投资		300万元				
实际总投资	8000万元	其中环保投资		300万元				
验收监测依据	1.《关于修改<建设项目环境保护管理条例>的决定》(自2017年10月1日施行) 2.《建设项目竣工环境保护验收技术指南污染影响类》(公告2018年第9号,2018.5.16) 3.《关于环境保护部委托编制竣工环境保护验收调查报告和验收监测报告有关事项的通知》(环办环评[2016]16号) 4.《建设项目竣工环境保护验收暂行办法》(国环规环评【2017】4号,2017年11月) 5.《深圳先进电子材料国际创新研究院(二期工程)建设项目环境影							

响报告表》(2024年5月)及其审查批复(深环宝批〔2024〕000009 号)

- 6.《深圳先进电子材料国际创新研究院(二期工程)建设项目竣工环境保护验收检测报告》(报告编号: HB253V0189010-1940,深圳市华保科技有限公司)
- 7.《排污许可证》(证书编号: 12440300MB2D1255X8001W, 2024年 07月29日)

本次验收内容为深圳先进电子材料国际创新研究院(二期工程) 建设项目"三同时"环保竣工验收,主要针对项目废水治理设施、废 气治理设施、厂区及厂界无组织废气、厂界噪声、固体废弃物处置情 况进行验收,并核实其他环保措施的落实情况。

根据《深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响报告表》(2024年5月)、深圳先进电子材料国际创新研究院排污许可证(证书编号:12440300MB2D1255X8001W)的排放标准限值及新修订或颁布的环境保护标准。

1. 大气污染物排放标准

项目废气主要为实验研发过程产生的挥发性有机物(NMHC、苯系物)、硫酸雾、锡及其化合物、颗粒物等。

验收监测评 价标准、标 号、级别、限 值 有机废气:项目有机废气排放执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022),其中有组织执行表 1 标准(即 NMHC 最高允许浓度限值 80mg/m³、甲苯参照苯系物最高允许浓度限值 40mg/m³),厂区内 NMHC 排放执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 限值要求,考虑到该标准缺少甲醇限值要求,且"表 4 企业边界 VOCs 无组织排放限值"中缺少本项目相关污染因子,因此甲醇有组织排放执行广东省《大气污染物排放限值》(DB 44 27-2001)第二时段二级标准,甲醇、甲苯、NMHC 厂界无组织排放执行广东省《大气污染物排放限值》(DB 44 27-2001)第二时段无组织监控浓度限值。

其他实验废气:硫酸雾、颗粒物、锡及其化合物排放执行广东省《大气污染物排放限值》(DB 44 27-2001)第二时段二级标准及无组织排放监控浓度限值。

废水站臭气:本项目对一期已建废水站进行升级改造,扩大废水接纳能力,升级改造后的废水站运营过程中产生的臭气参照执行天津

市地方标准《恶臭污染物排放标准》(DB12/059-2018) 中的表 1 标准 (有组织排放口) 和表 2 标准 (无组织排放周界限值)。

2. 水污染物排放标准

(1) 综合实验废水

项目晶圆级扇出型封装研发实验室在研发过程中涉及产生含铜、 镍的实验废液,通过电镀机设定程序自动进入废液收集池;不含重金 属的镀前清洗水通过电镀机设定程序引入废水收集管道进入经升级改 造后的废水站处理: 晶圆级扇出型封装研发实验室仪器清洗废水、地 面清洗废水等,用防渗容器收集后委托具有危险废物处理资质单位拉 运处理处置,实验室不设下水点;其他实验室产生的仪器清洗废水、 地面清洗废水等不含铜、镍等污染物的综合实验废水纳入升级改造后 的废水站处理,该废水站接纳了电子专用材料研发废水,由于《电子 工业水污染物排放标准》(GB 39731-2020)的间排标准较广东省《水 污染物排放限值》(DB44/26-2001)与福永水质净化厂进水标准的较 严者限值要求基本一致或更宽松:同时,根据 GB 39731-2020 中的 3.16 条款,单位产品基准排水量是指"用于核定水污染物排放浓度而规定 的生产单位产品的排水量上限值",本项目仅研发小试,不涉及中试 放大等生产制造。为此,本项目废水不考虑单位产品基准排水量要求, 水污染物排放参照一期工程批复(深环宝批[2021]000046号)执行广 东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准与福 永水质净化厂进水标准的较严者,废水经处理达标后由现状 DW001 排口排入市政管网后进入福永水质净化厂处理。

(2) 生活污水

项目位于福永水质净化厂服务范围,生活污水排放执行广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准。

(3) 纯水制备尾水

项目纯水机尾水,属于低浓度废水,经市政管网排入福永水质净 化厂处理。

3. 噪声控制标准

项目厂界噪声执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3类声环境功能区排放限值要求,即昼间65dB(A)、夜

间 55dB(A)。

4. 固体废物

固体废物严格按照《中华人民共和国固体废物污染环境防治法》、《广东省固体废物污染环境防治条例》、《危险废物贮存污染控制标准》(GB18597-2023)、《国家危险废物名录》(2025 年版)等规定执行。

表 1-1 污染物排放标准

类别	执行标准			标准值		
	有组织排放标 广东省《固定污染源挥发性有机 物综合排放标 准》 (DB44/2367-20 22)表1排放限值、厂界无组织排放大气污染物排 放大气污染物排 放限值》 (DB44/27-2001)中第二时限值 组织排放 求	污染物	最允排浓(mg/m³)	排气筒高度(m)	最高 允许 排率 kg/h	无组 织游 按限 值 (mg/ m³)
		NMHC	80	15 (DA023) 20 (DA017-DA020)	/	4.0
		苯系物	40	20 (DA018-DA019)	/	2.4 (甲 苯)
"		颗粒物	120	20 (DA020)	2.4 ^①	1.0
物	广东省《大气污 染物排放限值》	硫酸雾	35	20 (DA015, DA021)	1.1 ^①	1.2
	(DB44/27-2001)第二时段二级	氯化氢	100	20 (DA016, DA022)	0.18 ¹	0.20
	标准及无组织排 放限值	甲醇	190	20 (DA018-DA019)	3.5 ¹	12
		锡及其 化合物	8.5	20 (DA020)	0.215 ¹	0.24
	天津市地方标准	硫化氢	/		0.10	0.02
	《恶臭污染物排 放标准》	氨	/	20	1.0	0.20
	(DB12/059-2018) 表 1 标准(有组 织)和表 2 标准 (厂界无组织)	臭气浓度	1000 (无 量 纲)	20 (DA013)	/	20 (无 量纲)

	广东省《固定污 染源挥发性有机 物综合排放标		监控点处	1h 平均浓度值: 6m	ng/m ³
	准》 (DB44/2367-20 22)表3厂区内 VOCs 无组织排放限值	NMHC	监控点处付	£意一次浓度值: 20r	mg/m ³
	生活污水及纯水	污染物		(mg/L, pH 为无量:	烟)
	制备尾水执行广	рН	MARIKE	6-9	×11,
	东省地方标准	COD_{Cr}		500	
	《水污染物排放	BOD ₅		300	
	限值》	SS		400	
	(DB44/26-2001) 第二时段三级标	氨氮		/	
	准				
水	的仪器清洗废 水、地面清洗废 水等不含铜 镍	污染物	标准限值 (mg/L, pH 为 无量纲)	福永水质净化厂 进水限值(mg/L, pH 为无量纲)	本项 目 值 (mg/ L, pH 为无 量纲)
	实验废水执行广	рН	6-9	6-9	6-9
	东省《水污染物 排放限值》	COD_{Cr}	500	260	260
	(DB44/26-2001)	BOD ₅	300	150	150
	第二时段三级标	SS	400	200	200
	准与福永水质净 化厂进水标准的	氨氮	/	35	35
	较严者	总磷	/	5	5
		总氮	/	45	45
		石油类	20	/	20
	《工业企业厂界	类别			夜间
· 噪声	环境噪声排放标 准》 (GB12348-2008)	3 类	6:	5 dB(A)	55 dB(A)
度	: ①DA015~DA022			排气筒高度 15m,持 医严格 50%,表中数抗	

表二 项目建设情况

2.1 工程建设内容

深圳先进电子材料国际创新研究院(以下简称"先进研究院"或项目)成立于 2019 年 06 月 18 日,社会统一信用代码: 12440300MB2D1255X8,主要围绕高密度集成电路关键材料的基础关键问题与应用研究。建设单位租赁深圳市宝安区广深高速与福洲大道交汇处的龙王庙工业区中第 1~8 栋厂房、A 栋办公楼、B 栋和 C 栋宿舍,总占地面积 22000m²,总建筑面积 43465.38m²,该项目分两期进行建设,其中一期项目包括 2 栋、5 栋、6 栋、7 栋、A 栋和 B 栋,二期工程包括 1 栋、3 栋、4 栋、8 栋四栋厂房和 C 栋 1 栋宿舍。本次验收仅针对二期工程。

二期工程于 2024 年 5 月申请扩建环境影响评价手续,并于 2024 年 5 月 31 日取得深圳市生态环境局宝安管理局《关于深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响报告表的批复》(深环宝批〔2024〕000009 号),批注建设内容为:年研发绝缘胶膜 38400m、纳米银 96kg、纳米铜 24kg、硅微粉 96kg、晶圆级扇出型封装 4000 片、FC 基板级封装 2000 片、电子封装用胶粘剂等常规电子专用材料 24kg。

二期工程在 2024 年 05 月 31 日取得《深圳市生态环境局宝安管理局关于深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响报告表的批复》(深环宝批(2024)000009 号)后,随即开工建设,并于 2024 年 07 月 29 日取得深圳市生态环境局宝安管理局颁发的《排污许可证》(证书编号: 12440300MB2D1255X8001W),于2025 年 03 月开始调试。

经调试稳定后,根据《建设项目竣工环境保护验收暂行办法》(国环规环评[2017]4号)等环保法规的要求,先进研究院启动自主环保验收工作,委托深圳市华保科技有限公司于 2025 年 04 月 07 日~2025 年 5 月 28 日对项目进行了验收监测,现根据验收监测结果和核查情况编制本项目竣工环境保护验收监测报告表。

项目建设情况见下表:

表 2-1 项目产品及年产量

 序号 	产品名称	设计研发年产量	调试稳定后折算研发 年产量	变化情况
1	绝缘胶膜	38400 米	38400 米	
2	纳米银	96kg	96kg	
3	纳米铜	24kg	24kg	
4	硅微粉	96kg	96kg	基本一致,无明显变
5	晶圆级扇出型封装	4000 片	4000 片	化
6	FC基板级封装	2000 片	2000 片	
7	电子封装用胶粘剂等 常规电子专用材料	24kg	24kg	

综上,调试稳定后,项目产品及折算年产量与扩建环评设计情况基本一致,无明显 变化。

2.2 原辅材料消耗及水平衡

2.2.1 主要原辅材料

项目主要原辅材料与设计情况基本一致,详见下表。

表 2-2 主要原辅材料及年用量一览表

存放位 置	名称	物态	単位	设计年用量	调试稳定以来 折算年用量	变化情况
	***	液态	kg	900	900	
	***	固态	kg	100	100	
	***	液态	kg	3600	3600	
8 栋 1	***	固态	kg	3600	3600	基本无变化
	***	液态	kg	20	20	
	***	固态	kg	20	20	
	***	固态	kg	900	900	
	***	固态	kg	150	150	
	***	固态	kg	70	70	
	***	固态	kg	130	130	
	***	固态	kg	10	10	
	***	固态	kg	10	10	基本无变化
	***	固态	kg	100	100	
8栋2	***	液态	kg	20	20	
楼	***	液态	kg	200	200	
	***	液态	kg	20	20	
	***	液态	kg	100	100	
	***	液态	kg	80	80	
	***	固态	kg	30	30	
	***	液态	kg	30	30	
	***	固态	kg	100	100	
	***	液态	kg	50	50	
	***	液态	kg	12	12	
4栋1楼	***	液态	kg	6	6	基本无变化
及1栋1 楼	***	固态	kg	50	50	
	***	固态	片	50	50	
	***	液态	kg	480	480	

	***	液态	kg	100	100	
	***	液态	L	2	2	
	***	固态	kg	5	5	
	***	液态	kg	15	15	
	***	液态	kg	140	140	
	***	液态	kg	20	20	
	***	液态	kg	30	30	
	***	膏状	kg	250	250	
	***	膏状	g	300	300	
	***	固态	kg	450	450	
	***	固态	kg	100	100	
	***	固态	m	900	900	
	***	液态	kg	280	280	
	***	液态	kg	60	60	
	***	液态	kg	800	800	
	***	液态	kg	2000	2000	
	***	液态	kg	1200	1200	
	***	液态	kg	2000	2000	
	***	液态	kg	1500	1500	
	***	固态	kg	5	5	
	***	固态	kg	5	5	
	***	液态	kg	1000	1000	
	***	液态	kg	1000	1000	
	***	气态	m ³	1000	1000	
	***	气态	m ³	500	500	
	***	气态	m ³	1000	1000	
	***	液态	kg	800	800	
	***	膏状	kg	1.5	1.5	
	***	固态	m	1000	1000	
	***	固态	kg	10	10	
	***	液态	kg	800	800	
	***	固态	m	1000	1000	
2 14 2	***	固态	kg	45	45	
3 栋 2~4 楼	***	固态	kg	45	45	基本无变化

***	液态	g	1800	1800
***	固态	kg	45	45
***	液态	L	180	180
***	液态	L	180	180
***	液态	L	180	180
***	液态	L	180	180
***	液态	L	180	180
***	液态	L	180	180

表 2-3 主要能源以及资源消耗一览表

类别	设计年用量	调试稳定以来折 算年用量	变化情况	来源
生活用水	1200t	1200t	基本无变化	市政给水管网
生产用水	8458.4t	8458.4t	基本无变化	1 川以纪小目网
电	50万 kWh	50万 kWh	基本无变化	市政电网

2.2.2 主要设备或设施

表 2-4 主要设备或设施清单一览表

类型	摆放位置	序号	设备名称	设计数 量(台)	建成后实际数 量(台)	变化情况
	8栋1楼	1	***	1	1	
	8栋1楼	2	***	1	1	
	8栋1楼	3	***	1	1	
	8栋1楼	4	***	2	2	
	8栋1楼	5	***	4	4	
	8栋1楼	6	***	3	3	
	8栋1楼	7	***	3	3	
	8栋1楼	8	***	3	3	
主体	8栋2楼	9	***	1(套)	1	基本无变化
工程	8栋2楼	10	***	1 (套)	1	圣平儿文化
	8栋2楼	11	***	1	1	
	8栋2楼	12	***	1	1	
	8栋2楼	13	***	2	2	
	8栋2楼	14	***	1	1	
	8栋2楼	15	***	2	2	
	8栋2楼	16	***	3	3	
	8栋2楼	17	***	1	1	
	8栋2楼	18	***	1	1	

8栋2楼	19	***	1	1	
8栋2楼	20	***	1	1	
4栋1楼	21	***	1	1	
4栋1楼	22	***	1	1	
4栋1楼	23	***	1	1	
4栋1楼	24	***	1	1	
4栋1楼	25	***	1	1	
4栋1楼	26	***	1	1	
4栋1楼	27	***	2	2	
4栋1楼	28	***	1	1	
4栋1楼	29	***	1	1	
4栋1楼	30	***	1	1	
4栋1楼	31	***	1	1	
4栋1楼	32	***	1	1	
4栋1楼	33	***	1	1	
4栋1楼	34	***	1	1	
4栋1楼	35	***	1	1	
4栋1楼	36	***	1	1	
4栋1楼	37	***	1	1	
4栋1楼	38	***	1	1	
4栋1楼	39	***	1	1	
4栋1楼	40	***	1	1	
4栋1楼	41	***	1	1	
4栋1楼	42	***	1	1	
4栋1楼	43	***	2	2	
4栋1楼	44	***	1	1	
4栋1楼	45	***	1	1	
4栋1楼	46	***	1	1	
4栋1楼	47	***	1	1	
4栋1楼	48	***	1	1	
4栋1楼	49	***	1	1	
4栋1楼	50	***	1	1	
4栋1楼	51	***	1	1	
4栋1楼	52	***	1	1	
4栋1楼	53	***	1	1	
1栋1楼	54	***	1	1	
1栋1楼	55	***	1	1	
1栋1楼	56	***	1	1	
1栋1楼	57	***	1	1	
1栋1楼	58	***	1	1	
1栋1楼	59	***	1	1	
1栋1楼	60	***	1	1	

	1栋1楼	61	***	1	1	
	1栋1楼	62	***	1	1	
	1栋1楼	63	***	1	1	
	1栋1楼	64	***	1	1	
	1栋1楼	65	***	1	1	
	1栋1楼	66	***	1	1	
	1栋1楼	67	***	1	1	
	1栋1楼	68	***	1	1	
	3栋2~4楼	69	***	83	83	
	3栋2~4楼	70	***	78	78	
	3栋2~4楼	71	***	39	39	
	1 壮 厂 户	1	酸性废气处理设施	2	2	世未工亦ル
	1 栋厂房	2	有机废气处理设施	1	1	基本无变化
	3 栋厂房	3	有机废气处理设施	9	9	基本无变化
环保	4 抚厂良	4	综合废气处理设施	1	1	甘未工亦ル
工程	4 栋厂房	5	酸性废气处理设施	3	3	基本无变化
		6	涂布有机废气处理设施	1	1	+ 1. 7 - 1.
	8 栋厂房	7	有机废气处理设施	4	4	基本无变化
	/	8	废水站的废气治理设施	1	1	基本无变化
	/	9	提升改造后的废水站	1	1	基本无变化
	第1栋厂房 1楼东侧	1	仓库	1	1	
储运 工程	第8栋厂房 1楼西南侧	2	仓库	1	1	基本无变化
	第8栋2楼 东南侧	3	仓库	1	1	

2.2.3 水平衡

深圳先进电子材料国际创新研究院(二期工程)建设项目涉及清洗、配制溶液、纯水机反冲洗、废气处理、纯水制备等工艺,实验室产生设备仪器清洗废水、试剂废液、地面清洗废水、纯水机反冲洗废水、废气喷淋塔喷淋废水等实验综合废水及纯水制备尾水。根据项目排污许可证及生产现状,目前用水环节主要为员工办公生活用水、溶液配制用水、工艺清洗及设备仪器清洗用水、实验室地面清洗用水、纯水制备和反冲洗用水、废气喷淋塔喷淋用水等,均由市政自来水管网供水,总用水量约9658.4t/a(41.99t/d),使用过程中除部分蒸发,和部分收集后定期委托有相应危险废物处理资质单位拉运处置外(试剂废液因成分复杂、晶圆级扇出型封装实验室产生可能含铜、镍、银、锡等重金属污染物,收集后定期委托有相应危险废物处理资质单位拉运处置,拉运处理处置量

1.04t/d、239.62t/a),其余排放。其中生活污水排放约 1080t/a(4.70t/d)排入污水管道,经化粪池收集处理后纳入市政污水管网; 纯水制备尾水排放约 577t/a(2.50t/d),经市政管网排污福永水质净化厂处理; 生产废水排放约 3061.26t/a(13.31t/d)排入污水管道,经化粪池收集处理后纳入市政污水管网,最终进入福永水质净化厂进一步处理,现状水平衡图如下。

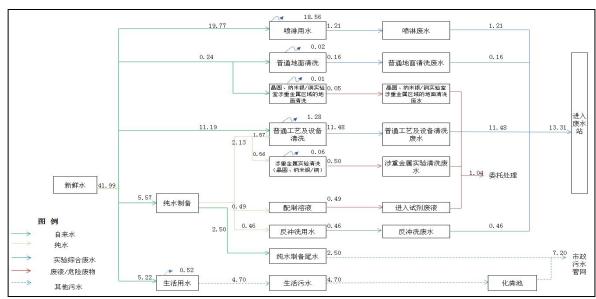


图 2-1 水平衡图

2.3 主要工艺流程及产污环节(附处理工艺流程图,标出产污节点)

此处涉密, 作脱密处理

2.4 验收监测范围

本次验收主要为深圳先进电子材料国际创新研究院(二期工程)建设项目"三同时" 环保竣工验收,为自主验收,重点针对废水治理设施排放监测、废气处理设施排放监测、 厂界及厂区内无组织废气排放监测、厂界噪声监测、固体废弃物处置情况检查,并核实 其他环保措施的落实情况。

2.5 项目变动情况

由上述分析,工程实际建设情况与设计阶段建设内容基本一致,本项目为审批环评项目,与环评批复相比,项目的生产场所、生产工艺、产品种类和数量、厂房面积均未

发生变化。

本项目与环评批复相比的变动情况对比如下。

表 2-11 本工程变更情况表

内容	环评时的建设内容	实际建成的建设内容	变更 情况	变更 原因
规模	绝缘胶膜 38400m/a、纳米银 96kg/a、纳米铜 24kg/a、硅微粉 96kg/a、晶圆级扇出型封装 4000 片/年、FC 基板级封装 2000 片/年、电子封装用胶粘剂(底部填充胶)等常规电子专用材料	绝缘胶膜 38400m/a、纳米银 96kg/a、纳米铜 24kg/a、硅微粉 96kg/a、晶圆级扇出型封装 4000 片/年、FC 基板级封装 2000 片/年、电子封装用胶粘剂(底部填充胶)等常规电子专用材料	不变	/
总投资	8000 万元 (其中环保投资 300 万元)	8000 万元 (其中环保投资 300 万元)	基本不变	/
工艺流程	混料、涂布、裁切、加工验证、研发产物、混合反应、分离纯化、焊膏配制、烧结、性能测试、干燥及煅烧、粉碎、临时键合层制作、PI 介电层制作、溅射、光刻、电镀(铜、镍、金、锡、银)、倒装、包封、磨划、检测、芯片倒装、回流焊、底部填充、贴散热片、打印、植球、测试分选、称量、混合分装、烘干、测试等。	混料、涂布、裁切、加工验证、研发产物、混合反应、分离纯化、焊膏配制、烧结、性能测试、干燥及煅烧、粉碎、临时键合层制作、PI 介电层制作、溅射、光刻、电镀(铜、镍、金、锡、银)、倒装、包封、磨划、检测、芯片倒装、回流焊、底部填充、贴散热片、打印、植球、测试分选、称量、混合分装、烘干、测试等	无变 化	/
建设地址	深圳市宝安区广深高速与福洲大 道交汇处的龙王庙工业区中1 栋、3 栋、4 栋、8 栋厂房和 C 栋 宿舍	深圳市宝安区广深高速与福洲大道交 汇处的龙王庙工业区中 1 栋、3 栋、4 栋、8 栋厂房和 C 栋宿舍	不变	/
环保工程	配套 1 套废污水处理设施; 21 套有机废气处理设施; 1 套升 级改造后的废水站废气治理设施	配套 1 套废污水处理设施; 21 套有机废气处理设施; 1 套升级改造 后的废水站废气治理设施	不变	/
 设备	J	见表 2-4	基本 不变	/
原辅材料	J	凡表 2-2	基本 不变	/

根据项目建设内容及规模、生产设备清单可知,本次验收工程与环评阶段相比主要变动为:

设计排放口 10 个,4 个酸性废气排放口、4 个有机废气排放口、1 个综合废气排放口、1 个恶臭废气排放口;根据排污许可,实际建成排放口 10 个,4 个酸性废气排放口、4 个有机废气排放口、1 个综合废气排放口、1 个恶臭废气排放口。

根据《关于印发<污染影响类建设项目重大变动清单(试行)>的通知》(环办环评函[2020]688号)的要求:根据《中华人民共和国环境影响评价法》和《建设项目环境保护管理条例》有关规定,建设项目的性质、规模、地点、生产工艺和环境保护措施五个因素中的一项或一项以上发生重大变动,且可能导致环境影响显著变化(特别是不利环境影响加重)的,界定为重大变动。属于重大变动的应当重新报批环境影响评价文件,不属于重大变动的纳入竣工环境保护验收管理。

表 2-12 重大变动清单对照表

项目	环办	水环评函[2020]688 号中"污染物影响建设项目重 大变动清单(试行)"内容	建成情况	是否属 于重大 变动
1	性质	1.建设项目开发、使用功能发生变化的。	项目在评价地址建设,开发、 使用功能无变化。	否
		2.生产、处置或储存能力增大 30%及以上的。	建设内容及规模与环评设计 阶基本一致。	否
		3.生产、处置或储存能力增大,导致废水第一 类污染物排放量增加的。	项目生产、处置或储存能力 基本无变化,未涉及废水第 一类污染物排放。	否
2	规模	4.位于环境质量不达标区的建设项目生产、处置或储存能力增大,导致相应污染物排放量增加的(细颗粒物不达标区,相应污染物为二氧化硫、氮氧化物、可吸入颗粒物、挥发性有机物; 臭氧不达标区,相应污染物为氮氧化物、挥发性有机物; 其他大气、水污染物因子不达标区,相应污染物为超标污染因子); 位于达标区的建设项目生产、处置或储存能力增大,导致污染物排放量增加 10%及以上的。	项目位于达标区,不设生产, 仅研发,项目研发、处置或 储存能力基本无变化,不增 加污染物排放量。	否
3	地点	5.重新选址;在原厂址附近调整(包括总平面 布置变化)导致环境防护距离范围变化且新增	项目在环评报批地址建设, 未导致环境防护距离范围变	否

		敏感点的。	化,未新增敏感点。	
4	生产工艺	6.新增产品品种或生产工艺(含主要生产装置、设备及配套设施)、主要原辅材料、燃料变化,导致以下情形之一: (1)新增排放污染物种类的(毒性、挥发性降低的除外); (2)位于环境质量不达标区的建设项目相应污染物排放量增加的; (3)废水第一类污染物排放量增加的; (4)其他污染物排放量增加 10%及以上的。	产品、工艺、原辅料及燃料均基本无变化。	否
		7.物料运输、装卸、贮存方式变化,导致大气 污染物无组织排放量增加 10%及以上的。	物料运输、装卸、贮存方式 无变化。	否
		8.废气、废水污染防治措施变化,导致第6条中所列情形之一(废气无组织排放改为有组织排放、污染防治措施强化或改进的除外)或大气污染物无组织排放量增加10%及以上的。	废水、废气污染防治措施无 变化,不增加污染物排放总 量	否
		9.新增废水直接排放口;废水由间接排放改为 直接排放;废水直接排放口位置变化,导致不 利环境影响加重的。	工业废水、生活污水经处理 达标后分别排入市政污水管 网,各设1个排放口,属间 接排放,排放口位置无变化。	否
5	环境保护	10.新增废气主要排放口(废气无组织排放改为有组织排放的除外);主要排放口排气筒高度降低 10%及以上的。	不增加废气主要排放口,废 气排放口高度不降低	否
	措施	11.噪声、土壤或地下水污染防治措施变化,导致不利环境影响加重的。	已采取场区地面硬化等防治 措施,不导致不利环境影响 加重。	否
		12.固体废物利用处置方式由委托外单位利用 处置改为自行利用处置的(自行利用处置设施 单独开展环境影响评价的除外);固体废物自 行处置方式变化,导致不利环境影响加重的。	固体废物委托处理、处置方 式不变,不导致不利环境影 响加重。	否
		13.事故废水暂存能力或拦截设施变化,导致环境风险防范能力弱化或降低的。	事故废水暂存能力或拦截设 施不变,不会因此导致环境 风险防范能力弱化或降低。	否

综上所述,项目的变更不属于重大变动。

表三 主要污染源、污染处理和排放情况

主要污染源、污染处理和排放(附处理流程示意图,标出废水、废气、厂界地面噪声 监测点位)

1、废水

本项目涉及实验综合废水、纯水制备尾水及生活污水、具体如下。

①实验综合废水:项目实验综合废水包括实验室产生的设备仪器清洗废水、试剂废液、地面清洗废水、纯水机反冲洗废水、废气喷淋塔喷淋废水,总产生量 14.35t/d、3300.88t/a,其中试剂废液因成分复杂,晶圆级扇出型封装研发实验室与纳米银/铜铜实验室部分工艺及设备清洗废水、地面清洗废水因可能涉及含铜、镍、银、锡等重金属污染物,用防渗容器收集后定期委托具有危险废物处理资质拉运处理处置,拉运处理处置量 1.04t/d、239.62t/a;其他实验综合废水包括普通实验室地面清洗废水、不含重金属的工艺及设备仪器清洗废水、纯水机反冲洗废水、废气喷淋塔喷淋废水产生量合计 13.31t/d、3061.26t/a,经各栋厂房配套废水收集池收集后进入升级改造后的废水站处理。

②纯水制备尾水:项目纯水机产生的尾水为 577t/a,主要含无机盐类(钙盐、镁盐、钠盐等)及其他矿物质,水质简单,根据一期项目验收监测报告,该水 COD 约8~15mg/L、NH₃-N 约 0.233~0.358mg/L,优于《地表水环境质量标准》(GB3838-2002)III类水质标准(COD≤20mg/L、氨氮≤1.0mg/L),经市政管网排入福永水质净化厂处理。

③生活污水:项目员工 80 人,均在厂区内食宿,与环评设计情况一致。生活污水实际产生量约 4.70m³/d(1080m³/a),经化粪池预处理后排入市政污水管网。

项目属于福永水质净化厂服务范围,生产废水经废水治理设施处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)中的第二时段三级标准与福永水质净化厂进水标准的较严者,经市政污水管网进入福永水质净化厂处理后续处理;纯水制备尾水经市政污水管网进入福永水质净化厂处理后续处理;生活污水经工业区化粪池预处理后,达到广东省地方标准《水污染物排放限值》(DB44/26-2001)中的第二时段三级标准,经市政污水管网进入福永水质净化厂处理后续处理。

2、废气

根据环评文件,项目废气主要为有机废气、酸性废气、颗粒物与锡及其化合物、

恶臭废气。

①有机废气: 8 栋 1 楼绝缘胶膜研发过程中产生的涂布废气密闭收集后经 RCO (TA031) 处理、混料废气经二级活性炭(TA034) 处理后,与同栋 2 楼处理后的废气一并通过 DA023 排气筒排放; 8 栋 2 楼硅微粉、纳米铜、纳米银研发过程中产生的有机废气密闭收集后经 3 套喷淋+活性炭(TA032、TA033、TA035) 处理后,与同栋 1 楼处理后的废气一并通过 DA023 排气筒排放; 4 栋 1 楼晶圆级扇出型封装、FC 基本级封装研发过程中产生的有机废气经密闭收集后全部进入综合废气处理设施(TA028,喷淋+活性炭吸附)处理后由 DA020 排气筒排放; 在 1 栋 1 楼晶圆级扇出型封装、FC 基本级封装研发过程中产生的有机废气经 TA017 二级活性炭吸附处理后经 DA017 排气筒排放; 3 栋 2~4 层电子封装用胶粘剂配方研发等常规理化试验产生的废气经密闭收集后经 9 套喷淋+活性炭(TA018~TA026)处理后,由 DA018~DA019 排气筒排放。

②酸性废气:本项目酸性废气主要为硫酸雾、氯化氢,经密闭收集后喷淋塔碱液吸收处理,由 DA015、DA016、DA021、DA022 排气筒排放。

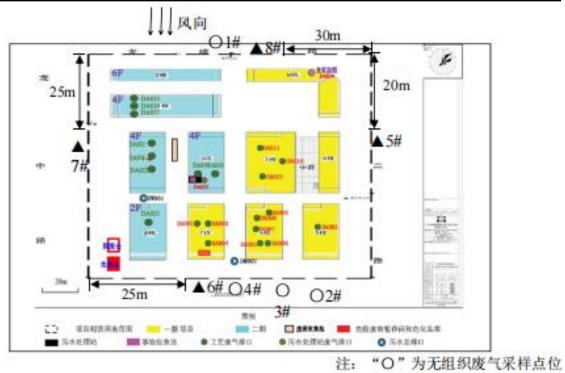
- ③颗粒物与锡及其化合物:项目焊锡工艺产生少量的颗粒物与锡及其化合物,经密闭收集后进入综合废气处理设施(TA028,喷淋+活性炭吸附)处理后由 DA020 排气筒排放。
- ④恶臭废气:本项目升级改造后的废水站臭气经原一期工程已设废气治理设施处理达标后由 DA013 排气筒排放。

3、噪声

项目主要噪声源为设备运行产生的噪声,项目周边50m不存在声环境敏感保护目标。

本项目主要降噪措施为:在设备选择上优先考虑选择低噪设备,场地合理布局, 采用双层玻璃窗进行隔音降噪,动力设备置于独立房间进行降噪隔声处理等。

4、固体废物


- 1)生活垃圾:项目生活垃圾类固废分类收集在垃圾桶内,定期由环卫部门清运处理。
- 2)一般工业废物:主要为包装过程中产生的废包装材料、纯水制备废滤芯、废滤膜等,分类收集后交由资源回收单位回收利用。

3) 危险废物:主要为项目运营过程中产生的废光刻胶、废感光胶等研发废化学品及其包装物、废气处理设施产生的废活性炭、研发实验废液、废水站产生少量的污泥,本项目固体废物暂存场所依托一期项目现已设置的一般固废仓、危险废物储存间及废液收集暂存设施。项目已与深圳市环保科技集团股份有限公司等签订工业废物处理协议,将危险废物分类收集后,交由其拉运处理。

表3-1 污染来源分析、治理情况及排放去向一览表

类	>~ >h, >p≠ £1. 1001	्रेस्ट और चंद	<u> </u>	产生	N ## - N- #
别	污染源位置	污染类型	主要污染物	规律	
	生活污水	生活污水	COD _{Cr} , BOD ₅ ,	间断	经化粪池预处理达标后,排入
	_L1H1 J/JV	T1H1 1/1/	SS、氨氮	1-1 [-1]	福永水质净化厂处理
		纯水制备			直接与预处理后的生活污水
	纯水制备	尾水	COD _{Cr} 等	间断	一并排入市政污水管,进入福
					永水质浄化厂处理
废水	普通实验室地面 清洗、不含重金属 的工艺及设备仪 器清洗、纯水机反 冲洗、废气喷淋塔	普室洗不属及器水机废气喷通地废含的设清、反水喷淋实面水重工备洗纯冲、淋废验清、金艺仪废水洗废塔水	pH、SS、COD _{Cr} 、 BOD₅	间断	经升级改造后的自建污水处 理设施处理达标后排放,进入 福永水质净化厂处理
废气	8 栋 2 楼绝缘胶膜研发; 8 栋 2 楼绝缘胶膜研发; 8 栋 2 楼绝缘胶膜研粉、研发; 4 栋铜。 从于最后,从于最后,从于最后,从于最后,从于最后,从于最后,从于最后,从于最后,	有机废气	非甲烷总烃、苯 系物、甲醇	间断	喷淋+活性炭吸附、二级活性 炭、RCO等处理后高空排放
	1 栋和 4 栋研发实验	酸性废气	硫酸雾、氯化氢	间断	碱液喷淋处理后高空排放

	焊锡	锡及其化 合物、颗 粒物	锡及其化合物、 颗粒物	间断	喷淋+活性炭吸附处理后高空 排放
	升级改造后的废 水站	恶臭废气	硫化氢、氨、臭 气浓度	间断	依托一期工程现有处理设施 处理后高空排放
固体废物	运营过程	危险废物	项目运营过程中 产生的废光财 形成形成形型 形成 一种	间断	本项目固体废物暂存场所依 托一期项目现已设置的危险 废物储存间及废液收集暂存 设施。项目已与深圳市环保科 技集团股份有限公司等签订 工业废物处理协议,将危险废 物分类收集后,交由其拉运处 理
	运营过程	一般工业固废	包装过程中产生 的废包装材料、 纯水制备废滤 芯、废滤膜等	间断	分类收集后交由资源回收单 位回收利用
	生活垃圾	 生活垃圾 	生活垃圾	间断	交环卫部门处理
噪声	设备设施	噪声	噪声	间断	在设备选择上优先考虑选择 低噪设备,场地合理布局,采 用双层玻璃窗进行隔音降噪, 动力设备置于独立房间进行 降噪隔声处理等

验收监测点布置图

图3-1

表四 建设项目环境影响报告表主要结论及审批部门审批决定

建设项目环境影响报告表主要结论及审批部门审批决定:

4.1 建设项目环境影响报告表主要结论及建议

根据《深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响报告表》 (2024年5月),环评报告表给出综合结论如下:

深圳先进电子材料国际创新研究院(二期工程)建设项目不在深圳市基本生态控制线内和水源保护区内,符合产业政策,符合区域环境功能区划、环境管理的要求;在实验研发过程中,如与本报告一致的建设内容,并能遵守相关的环保法律法规,严格执行"三同时"制度,确保项目污染物达标排放,认真落实环境风险的防范措施及应急预案,加强污染治理设施和设备的运行管理,对周围环境的负面影响能够得到有效控制,从环境保护角度分析,项目的扩建是可行的。

4.2、审批部门审批决定

根据《深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响报告表》 (2024年5月)的批复文件(深环宝批[2024]000009号,详见附件1),深圳市生态环境局宝安管理局对深圳先进电子材料国际创新研究院(二期工程)建设项目要求如下;

- 一、深圳先进电子材料国际创新研究院(二期工程)建设项目位于深圳市宝安区福永街道龙王庙工业区第1、3、4、8栋及C栋,建筑面积19813.88平方米。年研发绝缘胶膜38400m、纳米银96kg、纳米铜24kg、硅微粉96kg、晶圆级扇出型封装4000片、FC基板级封装2000片、电子封装用胶粘剂等常规电子专用材料24kg。主要生产工艺为混料、涂布、裁切、加工验证、研发产物、混合反应、分离纯化、焊膏配制、烧结、性能测试、干燥及煅烧、粉碎、临时键合层制作、PI介电层制作、溅射、光刻、电镀(铜、镍、金、锡、银)、倒装、包封、磨划、检测、芯片倒装、回流焊、底部填充、贴散热片、打印、植球、测试分选、称量、混合分装、烘干、测试等。项目不涉及研发中试和批量生产,不涉及P3、P4生物安全实验室及转基因实验室。
 - 二、建设单位应重点做好以下工作:
- (一)严格落实水污染防治措施。项目建成后实验综合废水排放量为13.31t/d (3101t/a),废水处理后达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准与福永水质净化厂设计进水水质要求较严值后,经市政管网排入福永水质净化厂处理。

- (二)严格落实大气污染防治措施。非甲烷总烃排放执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表1、表3排放限值要求;甲苯有组织排放执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表1排放限值,甲醇、硫酸雾、氯化氢、颗粒物、锡及其化合物有组织排放执行广东省《大气污染物排放限值》(DB 44/27-2001)第二时段二级标准,甲醇、甲苯、硫酸雾、氯化氢、颗粒物、锡及其化合物厂界无组织排放执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段无组织监控浓度限值。废水站臭气污染物排放执行《恶臭污染物排放标准(DB12/059-2018)表1、表2排放限值。
- (三)严格落实噪声污染防治措施。项目厂界执行《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准。
- (四)落实工业固体废物分类处理处置要求。工业固体废物不准擅自排放或混入 生活垃圾中倾倒,危险废物须委托具有危险废物经营许可单位依法处置,有关委托合 同须报我局监管部门备案,一般工业固体废物需交由相关回收企业综合利用。
- (五)建立健全环境风险事故防范应急体系,完善并严格落实各项环境风险防范措施和应急预案。
 - (六)项目总量控制要求:挥发性有机物排放量为2083.3kg/a。
- 三、项目建设运营过程中必须严格执行环境保护"三同时"制度,项目配套建设的防治污染设施,应当与主体工程同时设计、同时施工、同时投产使用。

你单位应当在发生实际排污之前按规定办理排污许可手续并组织开展环境保护 设施竣工验收,有关验收报告报我局备案。

四、项目在运营过程中加强环境管理和设施设备的维护管养,确保污染治理设施正常运行,污染物稳定达标排放。不得擅自拆除或者闲置防治污染设施。

五、该项目性质、规模、地点、采用的生产工艺或者防治污染、防止生态破坏的 措施发生重大变动的,应当重新报批环境影响评价文件。

自批准之日起超过五年,方决定该项目开工建设的,其环境影响评价文件应当报 原审批部门重新审核。

六、若对上述决定不服,可在收到本批复之日起六十日内,向深圳市人民政府或深圳市宝安区人民政府申请行政复议;或在接到本批复之日起六个月内向深圳市龙岗区人民法院提起行政诉讼。

表五 验收监测质量保证及质量控制

验收监测质量保证及质量控制:

- (1) 监测过程严格按污染物监测方法和其他有关技术规范进行。
- (2) 监测人员持证上岗,监测所用仪器都经过计量部门的检定合格并在有效期内使用。
- (3) 监测中使用的布点、采样、分析测试方法,应首先选择目前适用的国家和行业标准分析方法、监测技术规范,其次是国家环保总局推荐的同一分析方法或试行分析方法以及有关规定等。
- (4) 现场采样和测试应严格按《验收监测方案》进行,并对监测期间发生的各种异常情况进行详细记录,对未能按《验收监测方案》进行现场采样和测试的原因应予详细说明。
- (5) 监测全过程严格按照检测单位《质量手册》及有关质量管理程序要求进行, 实施严谨的全程序质量保证措施,监测数据严格实行三级审核制度。

本次验收监测质量控制由监测单位负责,相关质控情况见附件5。

表六 验收监测方案

验收监测内容:

1、项目验收监测方案

根据本项目实际情况,设计验收监测方案如下表。

表 6-1 验收监测方案一览表

类别	污染源	监测点位	监测因子	监测频次
废水	实验综合废水	实验综合废水处理前采样口	pH、COD _{Cr} 、BOD ₅ 、 SS、氨氮、TN、总 磷、石油类、总铜、 总镍、总银、总锡	共2个检测点,检测2 天,每天检测4次
	, , , , , , , , , , , , , , , , , , ,	实验综合废水处理后采样口	pH、COD _{Cr} 、BOD ₅ 、 SS、氨氮、TN、总 磷、石油类	/へ, 4.7人1型が3 寸 1人
	有组织废气	DA015排放口处理前采样口	硫酸雾	共2个检测点,检测2
	7年7//文【	DA015排放口处理后采样口	りに白文・ラギ	天,每天检测3次
	有组织废气	DA016排放口处理前采样口	氯化氢	共2个检测点,检测2
	DA016排放口处理后采样口	》《心学》	天,每天检测3次	
	有组织废气	DA017排放口处理前采样口	非甲烷总烃	共2个检测点,检测2
	行组织版	DA017排放口处理后采样口		天,每天检测3次
废气		DA018排放口处理前采样口1#		
		DA018排放口处理前采样口2#	非甲烷总烃、苯系物(苯、甲苯、二	
	 有组织废气	DA018排放口处理前采样口3#	甲苯、三甲苯、乙	共5个检测点,检测2 天,每天检测3次
		DA018排放口处理前采样口4#	苯和苯乙烯)、甲 醇	
		DA018排放口处理后采样口		
		DA019排放口处理前采样口1#	非甲烷总烃、苯系 物(苯、甲苯、二	
	 有组织废气	DA019排放口处理前采样口2#	甲苯、三甲苯、乙	共6个检测点,检测2 天,每天检测3次
		DA019排放口处理前采样口3#	苯和苯乙烯)、甲 醇	

		DA019排放口处理前采样口4#		
		DA019排放口处理前采样口5#		
		DA019排放口处理后采样口		
	有组织废气	DA020排放口处理前采样口	非甲烷总烃、锡及	共2个检测点,检测2
	有组织版气	DA020排放口处理后采样口	其化合物、颗粒物	天,每天检测3次
	有组织废气	DA021排放口处理前采样口	硫酸雾	共2个检测点,检测2
	有组织 及 (DA021排放口处理后采样口	圳段务	天,每天检测3次
	有组织废气	DA022排放口处理前采样口	氯化氢	共2个检测点,检测2
	有组外 及(DA022排放口处理后采样口	来, 化全(天,每天检测3次
		DA023排放口处理前采样口1#		
	有组织废气	DA023排放口处理前采样口2#	非甲烷总烃	共4个检测点,检测2
	有组外 及(DA023排放口处理前采样口3#	11 1 798701750	天,每天检测3次
		DA023排放口处理后采样口		
	有组织废气	DA013排放口处理前采样口	硫化氢、氨、臭气	共2个检测点,检测2
	有组外 及(DA013排放口处理后采样口	浓度	天,每天检测4次
	厂区内无组	8栋生产车间门口监控点	非甲烷总烃	共2个检测点,检测2
	织废气	1栋生产车间门口监控点	1 非甲烷总定	天,每天检测3次
		无组织废气上风向参照点1#	非甲烷总烃、颗粒	
	厂界无组织	无组织废气下风向监控点2#	物、锡及其化合物、硫酸雾、氯化氢、	共4个检测点,检测2
	废气	无组织废气下风向监控点3#	甲苯、甲醇、氨、	天,每天检测3次
		无组织废气下风向监控点4#	硫化氢、臭气浓度	
		5#厂界东侧外1米处		
 噪声	厂界噪声	6#厂界南侧外1米处	等效连续A声级	共4个检测点,昼夜各
"米广 ————————————————————————————————————	ノ クロケスピ	7#厂界西侧外1米处	LeqdB(A)	检测1次,检测2天
		8#厂界北侧外1米处		

2、监测分析方法

表 6-2 验收监测分析方法一览表

	检测项目	检测方法名称及编号	仪器型号及名称	最低检出限
	硫酸雾	离子色谱法 HJ 549-2016	883 Basic IC plus型	0.2 mg/m ³
	氯化氢	离子色谱法 HJ 544-2016	离子色谱仪	0.2 mg/m ³
	非甲烷 总烃	气相色谱法 HJ 38-2017	GC9790II型 气相色谱仪	0.07 mg/m ³
	甲醇	气相色谱法 HJ/T 33-1999	GC-2014 气相色谱仪	2mg/m ³
	锡及其 化合物	电感耦合等离子体质谱法 HJ 657-2013 及修改单	PE-NEXION-350X 型 电感耦合等离子体质谱仪	3×10 ⁻⁴ mg/m ³
有细	颗粒物	重量法 GB/T 16157-1996 及修改单	BSA224S-CW 型 电子天平	_
组织	苯		TD-100 型	0.01 mg/m ³
废	甲苯	气相色谱法 PR44/816 2010 『H录F	热脱附仪/	0.01 mg/m ³
气	二甲苯	DB44/816-2010 附录E	GC-2014型 气相色谱仪	0.02 mg/m^3
	乙苯	《空气和废气监测分析方法》		0.01 mg/m^3
	苯乙烯	(第四版增补版)国家环境保护总局 2003年 活性炭吸附二硫化碳解吸气 相色谱法 (B)6.2.1(1)	GC-2014 气相色谱仪	0.01 mg/m ³
	氨	纳氏试剂分光光度法 HJ 533-2019	UV-6300 紫外可见分光光度计	0.25mg/m ³
	硫化氢	气相色谱法 GB/T 14678-1993	7200+GC-2014型 气相色谱仪	0.0002mg/m ³
	臭气浓度	三点比较式臭袋法 HJ 1262-2022	_	_
	锡及其 化合物	电感耦合等离子体质谱法 HJ 657-2013	NEXION-350X 型 电感耦合等离子体质谱仪	1×10-6mg/m ³
无	非甲烷 总烃	直接进样-气相色谱法 HJ 604-2017	GC9790II型 气相色谱仪	0.07 mg/m ³
组织座	颗粒物	重量法 HJ 1263-2022	ME55 型 电子天平	0.17mg/m ³
废气	硫酸雾	离子色谱法 HJ 549-2016	883 Basic IC plus型	0.005 mg/m ³
	氯化氢	离子色谱法 HJ 544-2016	离子色谱仪	0.02mg/m ³

	_ ,,	 气相色谱法	GC-2014	
	甲苯	НЈ 584-2010	气相色谱仪	0.0015mg/m^3
	氨	次氯酸钠-水杨酸分光光度	UV-1900i	0.025mg/m ³
	女	法HJ 534-2009	紫外可见分光光度计	0.023mg/m
	硫化氢	气相色谱法GB/T 14678-1993	GC-2014 气相色谱仪	$0.0002 mg/m^3$
	臭气浓度	三点比较式臭袋法 HJ 1262-2022	_	_
	甲醇	气相色谱法	GC-2014	2 mg/m 3
	一 十 冊	HJ/T 33-1999	气相色谱仪	2111g/1111
	噪声	工业企业厂界环境噪声 排放标准 GB 12348-2008	AWA5688 型 多功能声级计	_
	pH 值	电极法 HJ 1147-2020	SX836 pH/mV/电导率/溶解氧测量 仪	_
	悬浮物	重量法 GB/T 11901-1989	ME204E/02型 精密分析天平	4 mg/L
	五日生化需氧量	稀释与接种法 HJ 505-2009	培养箱: LC-SPX-250BE 型生化培养箱 分析测定: JPSJ-605F型 溶解氧测定仪	0.5 mg/L
	化学需氧量	重铬酸盐法 HJ 828-2017	SCOD-100 型 标准 COD 消解器	4mg/L
	氨氮	纳氏试剂分光光度法 HJ 535-2009	UV-1900i 型 紫外可见分光光度计	0.025 mg/L
废 水	总氮	紫外分光光度法 HJ 636-2012	UV-1800 型 紫外可见分光光度计	0.05 mg/L
	总磷	钼酸铵分光光度法 GB/T 11893-1989	UV-1900i 型 紫外可见分光光度计	0.01 mg/L
	石油类	红外分光光度法 HJ 637-2018	OIL 460 型 红外分光测油仪	0.04 mg/L
	总铜	电感耦合等离子体发射	ICAP7400 型	0.04 mg/L
	总镍	光谱法 HJ 776-2015	电感耦合等离子体发射光 谱仪	0.007 mg/L
	总银	火焰原子吸收分光光度法 GB/T 11907-1989	PR-900F 型 原子吸收光谱仪	0.03 mg/L
	总锡	电感耦合等离子体质谱法 HJ 700-2014	NEXION-350X 型 电感耦合等离子体质谱仪	0.00008mg/L
	流量	流量测量 HJ 91.1-2019(6.6.2)	TD-2D 型 便携式明渠流量计	-

表七 验收监测结果

验收监测期间生产工况记录:

表7-1 验收工况记录表

产品	11& Van 1-1 44a	设计产量		检测日	负荷	年运营天
名称	上 监测日期	年产量	日均产量	实际产量	(%)	数 (d)
	绝缘胶膜	38400 米	166.96	150.31	90.03	
	纳米银	96kg	0.42	0.40	95.24	
	纳米铜	24kg	0.10	0.09	90.00	
2025. 04.07	硅微粉	96kg	0.42	0.41	97.62	
04.07	晶圆级扇出型封装	4000 片	17.39	16.39	94.25	
	FC基板级封装	2000 片	8.70	8.62	99.08	
	电子封装用胶粘剂等 常规电子专用材料	24kg	0.10	0.09	90.00	
	绝缘胶膜	38400 米	166.96	163.33	97.83	
	纳米银	96kg	0.42	0.39	92.86	
	纳米铜	24kg	0.10	0.10	100.00	
2025. 04.08	硅微粉	96kg	0.42	0.39	92.86	230
01.00	晶圆级扇出型封装	4000 片	17.39	17.33	99.65	
	FC基板级封装	2000 片	8.70	8.51	97.82	
	电子封装用胶粘剂等 常规电子专用材料	24kg	0.10	0.10	100.00	
	绝缘胶膜	38400 米	166.96	162.88	97.56	
	纳米银	96kg	0.42	0.40	95.24	
	纳米铜	24kg	0.10	0.10	90.00	
2025. 04.09	硅微粉	96kg	0.42	0.40	95.24	
	晶圆级扇出型封装	4000 片	17.39	17.35	99.77	
	FC基板级封装	2000 片	8.70	8.62	99.08	
	电子封装用胶粘剂等	24kg	0.10	0.10	100.00	

	常规电子专用材料				
	绝缘胶膜	38400 米	166.96	163.58	97.98
	纳米银	96kg	0.42	0.42	100.00
	纳米铜	24kg	0.10	0.08	100.00
2025. 04.10	硅微粉	96kg	0.42	0.41	97.62
04.10	晶圆级扇出型封装	4000 片	17.39	17.30	99.48
	FC基板级封装	2000 片	8.70	8.53	98.05
	电子封装用胶粘剂等 常规电子专用材料	24kg	0.10	0.09	90.00
	绝缘胶膜	38400 米	166.96	166.25	99.57
	纳米银	96kg	0.42	0.41	97.62
	纳米铜	24kg	0.10	0.09	90.00
2025. 05.19	硅微粉	96kg	0.42	0.42	100.00
03.17	晶圆级扇出型封装	4000 片	17.39	17.32	99.60
	FC基板级封装	2000 片	8.70	8.58	98.62
	电子封装用胶粘剂等 常规电子专用材料	24kg	0.10	0.09	90.00
	绝缘胶膜	38400 米	166.96	166.52	99.74
	纳米银	96kg	0.42	0.41	97.62
	纳米铜	24kg	0.10	0.09	90.00
2025. 05.20	硅微粉	96kg	0.42	0.40	95.24
05.20	晶圆级扇出型封装	4000 片	17.39	17.30	99.48
	FC基板级封装	2000 片	8.70	8.63	99.20
	电子封装用胶粘剂等 常规电子专用材料	24kg	0.10	0.10	100.00
	绝缘胶膜	38400 米	166.96	165.39	99.06
2025. 05.27	纳米银	96kg	0.42	0.40	95.24
	纳米铜	24kg	0.10	0.09	90.00

	硅微粉	96kg	0.42	0.39	92.86
	晶圆级扇出型封装	4000 片	17.39	17.33	99.65
	FC基板级封装	2000 片	8.70	8.69	99.89
	电子封装用胶粘剂等 常规电子专用材料	24kg	0.10	0.10	100.00
	绝缘胶膜	38400 米	166.96	166.86	99.94
	纳米银	96kg	0.42	0.41	97.62
	纳米铜	24kg	0.10	0.10	100.00
2025. 05.28	硅微粉	96kg	0.42	0.40	95.24
03.20	晶圆级扇出型封装	4000 片	17.39	17.34	99.71
	FC基板级封装	2000 片	8.70	8.62	99.08
	电子封装用胶粘剂等 常规电子专用材料	24kg	0.10	0.09	90.00

项目验收监测期间工况稳定,综合工况达到90%左右,各类设备、废水、废气等处理设施运行正常,满足验收监测要求。

验收监测结果:

1、废水

废水处理设施处理前、处理后检测结果详见下表。

表7-2 废水检测结果表

采样点位	松淵瑶	单位		检测结果(2	2025.05.19)			排放限			
米件点位	检测项目 	早 仏 	第一次	第二次	第三次	第四次	第一次	第二次	第三次	第四次	值
	pН	无量纲	7.3	7.2	7.1	7.0	9.6	9.7	4.7	2.8	/
	SS	mg/L	46	51	44	4 (L)	99	61	86	90	/
	BOD ₅	mg/L	81.8	87.6	89.7	93.5	56.9	55.8	54.6	55.8	/
	COD_{Cr}	mg/L	123	202	241	225	98	94	99	99	/
	氨氮	mg/L	0.025 (L)	0.025 (L)	0.025 (L)	0.025 (L)	0.025 (L)	0.046	0.251	0.260	/
定业社区业业	总氮	mg/L	1.30	1.66	2.55	1.58	2.77	2.31	3.30	3.39	/
污水站原水池	总磷	mg/L	0.01 (L)	0.09	0.10	0.10	0.26	0.22	0.40	0.39	/
	石油类	mg/L	0.20	0.35	0.20	0.44	0.57	0.66	0.38	0.39	/
	总铜	mg/L	0.04 (L)	0.04 (L)	0.04 (L)	0.04 (L)	0.04 (L)	0.04 (L)	0.04 (L)	0.04 (L)	/
	总镍	mg/L	0.007 (L)	0.007 (L)	0.007 (L)	0.007 (L)	0.007 (L)	0.007 (L)	0.007(L)	0.007 (L)	/
	总银	mg/L	0.03 (L)	0.03 (L)	0.03 (L)	0.03 (L)	0.03 (L)	0.03 (L)	0.03 (L)	0.03 (L)	/
	总锡	μg/L	0.08 (L)	0.08 (L)	0.08 (L)	0.08 (L)	0.08 (L)	0.08 (L)	0.08 (L)	0.08 (L)	/
	рН	无量纲	7.5	7.9	7.8	7.6	7.6	7.7	8.0	7.2	6-9
	SS	mg/L	4 (L)	4 (L)	4 (L)	4 (L)	4 (L)	4 (L)	4 (L)	4 (L)	200
DW001 废水排	BOD ₅	mg/L	25.2	25.2	24.8	24.4	18.4	18.7	19.3	18.7	150
放口	COD_{Cr}	mg/L	140	136	135	129	62	64	43	43	260
	氨氮	mg/L	0.248	0.182	0.098	0.057	0.025 (L)	0.025 (L)	0.025(L)	0.025 (L)	35
	总氮	mg/L	1.68	1.39	1.34	1.13	0.76	0.57	1.00	0.39	45

总磷	mg/L	0.01 (L)	5							
石油类	mg/L	0.11	0.10	0.09	0.07	0.14	0.10	0.10	0.12	20

注: 1.废水排放执行广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准与福永水质净化厂设计进水水质要求的较严值。 2.检测结果小于检出限或未检出以"检出限(L)"表示。

表7-3 废水检测达标情况表

采样点位	检测项目	检测次数/次	达标次数/次	达标率%
	рН	8	8	100
	SS	8	8	100
	BOD ₅	8	8	100
DW001 废水排放口	$\mathrm{COD}_{\mathrm{Cr}}$	8	8	100
DW001 /友/八升/八口	氨氮	8	8	100
	总氮	8	8	100
	总磷	8	8	100
	石油类	8	8	100

根据上表监测结果,项目废水经处理后,各项污染物排放达标率为100%,均可达到广东省地方标准《水污染物排放限值》 (DB44/26-2001)第二时段三级标准与福永水质净化厂设计进水水质要求的较严值。

2、废气

2.1有组织废气检测结果

表7-4 有组织废气检测结果表(1)

					检测统	结果(2025.0	4.09)	检测结	课(2025.0	排放限值		
采样点位		检测项目	检测点位及频次		排放浓 度 mg/m³	排放风量 m³/h	排放速 率 kg/h	排放浓 度 mg/m³	排放风 量 m³/h	排放速 率 kg/h	排放浓 度 mg/m³	排放 速率 kg/h
	酸性废气排放口 1#处理前	硫酸雾	DA015	第一次	0.2 (L)	4.45×10 ³	4.4×10 ⁻⁴	0.2 (L)	4.41×10 ³	4.4×10 ⁻⁴	/	/
				第二次	0.2 (L)	4.47×10 ³	4.5×10 ⁻⁴	0.2 (L)	4.43×10 ³	4.4×10 ⁻⁴		
				第三次	0.2 (L)	4.44×10³	4.4×10 ⁻⁴	0.53	4.44×10 ³	2.4×10 ⁻³		
				第一次	0.2 (L)	4.94×10 ³	4.9×10 ⁻⁴	0.2 (L)	4.88×10 ³	4.9×10 ⁻⁴	35	1.1
1 栋		硫酸雾	DA015	第二次	0.2 (L)	4.89×10 ³	4.9×10 ⁻⁴	0.2 (L)	4.91×10 ³	4.9×10 ⁻⁴		
				第三次	0.2 (L)	4.91×10 ³	4.9×10 ⁻⁴	0.2 (L)	4.92×10 ³	4.9×10 ⁻⁴		
	酸性废气排放口 2#处理前	氯化氢		第一次	0.39	9.73×10 ³	3.8×10 ⁻³	0.43	9.51×10 ³	4.1×10 ⁻³		/
			DA016	第二次	0.45	1.03×10 ⁴	4.6×10 ⁻³	1.01	1.01×10 ⁴	1.0×10 ⁻²	/	
				第三次	0.38	1.02×10 ⁴	3.9×10 ⁻³	0.44	9.81×10 ³	4.3×10 ⁻³		

酸性废气排放口 2#处理后	氯化氢	DA016	第一次	0.37	9.60×10 ³	3.6×10 ⁻³	0.42	9.68×10 ³	4.1×10 ⁻³	100	0.18
			第二次	0.36	9.74×10 ³	3.5×10 ⁻³	0.43	8.67×10 ³	3.7×10 ⁻³		
			第三次	0.37	9.25×10 ³	3.4×10 ⁻³	0.43	8.90×10 ³	3.8×10 ⁻³		
	非甲烷总烃		第一次	2.33	2.58×10 ³	6.0×10 ⁻³	1.76	2.72×10 ³	4.8×10 ⁻³	/	
有机废排放口处 理前		DA017	第二次	1.90	2.52×10 ³	4.8×10 ⁻³	1.40	2.77×10 ³	3.9×10 ⁻³		/
			第三次	2.19	2.67×10 ³	5.8×10 ⁻³	1.78	2.57×10 ³	4.6×10 ⁻³		
有机废排放口处 理后	1处 非甲烷总烃		第一次	1.23	3.98×10 ³	4.9×10 ⁻³	1.34	3.67×10 ³	4.9×10 ⁻³	80	
		DA017	第二次	1.32	3.87×10 ³	5.1×10 ⁻³	1.46	3.88×10 ³	5.7×10 ⁻³		/
			第三次	1.69	4.12×10 ³	7.0×10 ⁻³	1.54	3.75×10^3	5.8×10 ⁻³		

注: 1.DA015、DA016、DA017排气筒高度20m, DA015、DA016废气排放执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准,DA017 废气排放执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表1排放限值。

^{2.}检测结果小于检出限或未检出以"检出限(L)"表示。

				表7-4 有	「组织废气 检	逾 测结果表	(2)					
					检测结	果(2025.04	.07)	检测结	果(2025.0	04.08)	排放	限值
	采样点位	检测项 目	 检测点 	位及频次	排放浓度 mg/m³	排放风量 m³/h	排放速 率 kg/h	排放浓 度 mg/m³	排放风 量 m³/h	排放速 率 kg/h	排放 浓度 mg/m 3	排放 速率 kg/h
		IL III leb		第一次	1.80	6.56×10 ³	1.2×10 ⁻²	1.52	6.71×10 ³	1.0×10 ⁻²		
		非甲烷 总烃		第二次	1.48	6.82×10 ³	1.0×10 ⁻²	1.28	7.87×10^{3}	1.0×10 ⁻²	/	/
				第三次	1.40	6.85×10^3	9.6×10 ⁻³	1.39	7.14×10^3	9.9×10 ⁻³		
				第一次	2 (L)	6.56×10^3	6.6×10 ⁻³	2 (L)	6.71×10^3	6.7×10 ⁻³		
		甲醇		第二次	2 (L)	6.82×10 ³	6.8×10 ⁻³	2 (L)	7.87×10^{3}	7.9×10 ⁻³	/	/
				第三次	2 (L)	6.85×10^3	6.8×10 ⁻³	2 (L)	7.14×10^3	7.1×10 ⁻³		
				第一次	0.01 (L)	6.56×10 ³	3.3×10 ⁻⁵	0.01 (L)	6.71×10^3	3.4×10 ⁻⁵		
		苯		第二次	0.01 (L)	6.82×10 ³	3.4×10 ⁻⁵	0.01 (L)	7.87×10^{3}	3.9×10 ⁻⁵	/	/
3 栋	 有机废气 1#处理前 1#		DA018	第三次	0.01 (L)	6.85×10^3	3.4×10 ⁻⁵	0.01 (L)	7.14×10^3	3.6×10 ⁻⁵		
	有机及(1#处理的 1#		DAUIS	第一次	0.01	6.56×10^3	6.6×10 ⁻⁵	0.21	6.71×10^3	1.4×10 ⁻³		
		甲苯		第二次	0.01 (L)	6.82×10 ³	3.4×10 ⁻⁵	1.29	7.87×10^{3}	1.0×10 ⁻²	/	/
				第三次	0.01 (L)	6.85×10^3	3.4×10 ⁻⁵	0.01 (L)	7.14×10^3	3.6×10 ⁻⁵		
				第一次	0.02 (L)	6.56×10 ³	3.3×10 ⁻⁵	0.02 (L)	6.71×10 ³	6.7×10 ⁻⁵		
		二甲苯		第二次	0.02 (L)	6.82×10^3	6.8×10 ⁻⁵	0.11	7.87×10^{3}	8.7×10 ⁻⁴	/	/
				第三次	0.02 (L)	6.85×10 ³	6.8×10 ⁻⁵	0.02 (L)	7.14×10 ³	7.1×10 ⁻⁵		
				第一次	0.01 (L)	6.56×10^3	3.3×10 ⁻⁵	0.01 (L)	6.71×10^3	3.4×10 ⁻⁵		
		三甲苯		第二次	0.01 (L)	6.82×10 ³	3.4×10 ⁻⁵	0.03	7.87×10^{3}	2.4×10 ⁻⁴	/	/
				第三次	0.01 (L)	6.85×10 ³	3.4×10 ⁻⁵	0.02 (L)	7.14×10 ³	3.6×10 ⁻⁵		

				第一次	0.01 (L)	6.56×10^3	3.3×10 ⁻⁵	0.01 (L)	6.71×10 ³	3.4×10 ⁻⁵		
		乙苯		第二次	0.01 (L)	6.82×10^3	3.4×10 ⁻⁵	0.01 (L)	7.87×10^{3}	7.9×10 ⁻⁵	/	/
				第三次	0.01 (L)	6.85×10^3	3.4×10 ⁻⁵	0.01 (L)	7.14×10^{3}	3.6×10 ⁻⁵		
				第一次	0.01 (L)	6.56×10^3	3.3×10 ⁻⁵	0.01 (L)	6.71×10^3	3.4×10 ⁻⁵		
		苯乙烯		第二次	0.01 (L)	6.82×10 ³	3.4×10 ⁻⁵	0.01 (L)	7.87×10^{3}	7.9×10 ⁻⁵	/	/
				第三次	0.01 (L)	6.85×10^3	3.4×10 ⁻⁵	0.01 (L)	7.14×10^{3}	3.6×10 ⁻⁵		
				第一次	0.01	6.56×10^3	6.6×10 ⁻⁵	0.21	6.71×10 ³	1.4×10 ⁻³		
		苯系物		第二次	未检出	6.82×10^3	6.8×10 ⁻⁵	1.43	7.87×10^{3}	1.1×10 ⁻²	/	/
				第三次	未检出	6.85×10^3	6.8×10 ⁻⁵	未检出	7.14×10^3	7.1×10 ⁻⁵		
				第一次	1.54	8.11×10 ³	1.2×10 ⁻²	1.50	7.82×10^3	1.2×10 ⁻²		
		非甲烷 总烃		第二次	1.47	7.83×10^{3}	1.2×10 ⁻²	1.30	8.49×10 ³	1.1×10 ⁻²	/	/
		78.731		第三次	1.43	8.68×10^{3}	1.2×10 ⁻²	1.49	7.83×10^{3}	1.2×10 ⁻²		
				第一次	2 (L)	8.11×10^3	8.1×10 ⁻³	2 (L)	7.82×10^3	7.8×10 ⁻³		
		甲醇		第二次	2 (L)	7.83×10^3	7.8×10 ⁻³	2 (L)	8.49×10^{3}	8.5×10 ⁻³	/	/
				第三次	2 (L)	8.68×10^{3}	8.8×10 ⁻³	2 (L)	7.83×10^3	7.8×10 ⁻³		
	 有机废气 1#处理前 2#		DA018	第一次	0.01 (L)	8.11×10^3	4.0×10 ⁻⁵	0.01 (L)	7.82×10^3	3.9×10 ⁻⁵		
	有机版 (I#处理	苯	DAUIO	第二次	0.01 (L)	7.83×10^3	3.9×10 ⁻⁵	0.01 (L)	8.49×10^{3}	4.2×10 ⁻⁵	/	/
				第三次	0.01 (L)	8.68×10^{3}	4.3×10 ⁻⁵	0.01 (L)	7.83×10^{3}	7.8×10 ⁻⁵		
				第一次	0.07	8.11×10^{3}	5.7×10 ⁻⁴	0.94	7.82×10^3	7.4×10 ⁻³		
		甲苯		第二次	0.04	7.83×10^3	3.1×10 ⁻⁴	0.89	8.49×10 ³	7.6×10 ⁻³	/	/
				第三次	0.02	8.68×10 ³	1.7×10 ⁻⁴	0.73	7.83×10^{3}	5.7×10 ⁻³		
		二甲苯		第一次	0.02 (L)	8.11×10 ³	8.1×10 ⁻³	0.11	7.82×10^{3}	8.6×10 ⁻⁴	/	/
				第二次	0.02 (L)	7.83×10^3	7.8×10 ⁻⁵	0.12	8.49×10 ³	1.0×10 ⁻³	/	/

			第三次	0.02 (L)	8.68×10 ³	8.7×10 ⁻⁵	0.12	7.83×10^3	9.4×10 ⁻⁴		
			第一次	0.01	8.11×10^3	8.1×10 ⁻⁵	0.04	7.82×10^{3}	3.1×10 ⁻⁴		
	三甲苯		第二次	0.22	7.83×10^3	1.7×10 ⁻³	0.03	8.49×10 ³	2.5×10 ⁻⁴	/	/
			第三次	0.10	8.68×10 ³	8.7×10 ⁻⁴	0.04	7.83×10^{3}	9.4×10 ⁻⁴		
			第一次	0.01 (L)	8.11×10 ³	4.0×10 ⁻⁵	0.01 (L)	7.82×10 ³	3.9×10 ⁻⁵		
	乙苯		第二次	0.01 (L)	7.83×10 ³	3.9×10 ⁻⁵	0.01 (L)	8.49×10 ³	4.2×10 ⁻⁵	/	/
			第三次	0.01 (L)	8.68×10 ³	4.3×10 ⁻⁵	0.01 (L)	7.83×10 ³	3.9×10 ⁻⁵		
			第一次	0.01 (L)	8.11×10 ³	4.0×10 ⁻⁵	0.01 (L)	7.82×10 ³	3.9×10 ⁻⁵		
	苯乙烯		第二次	0.01 (L)	7.83×10 ³	3.9×10 ⁻⁵	0.01 (L)	8.49×10 ³	4.2×10 ⁻⁵	/	/
			第三次	0.01 (L)	8.68×10 ³	4.3×10 ⁻⁵	0.01 (L)	7.83×10 ³	3.9×10 ⁻⁵		
		-	第一次	0.08	8.11×10 ³	6.5×10 ⁻⁴	1.09	7.82×10 ³	8.5×10 ⁻³		
	苯系物		第二次	0.26	7.83×10 ³	2.0×10 ⁻³	1.04	8.49×10 ³	8.8×10 ⁻³	/	/
			第三次	0.12	8.68×10 ³	1.0×10 ⁻³	0.89	7.83×10 ³	7.0×10 ⁻³		
			第一次	1.46	6.55×10 ³	9.6×10 ⁻³	1.26	7.00×10 ³	8.8×10 ⁻³		
	非甲烷 总烃		第二次	1.32	7.46×10^{3}	9.8×10 ⁻³	1.31	6.76×10 ³	8.9×10 ⁻³	/	/
	心圧		第三次	1.34	6.87×10 ³	9.2×10 ⁻³	1.43	7.49×10 ³	1.1×10 ⁻²		
			第一次	2 (L)	6.55×10^3	6.6×10 ⁻³	2 (L)	7.00×10^{3}	7.0×10 ⁻³		
 有机废气 1#处理前 3#	甲醇	DA018	第二次	2 (L)	7.46×10^3	7.5×10 ⁻³	2 (L)	6.76×10^3	6.8×10 ⁻³	/	/
有机及(1#处理前 3#		DAUIS	第三次	2 (L)	6.87×10^3	6.9×10 ⁻³	2 (L)	7.49×10^3	7.5×10 ⁻³		
			第一次	0.01 (L)	6.55×10^3	3.3×10 ⁻⁵	0.01 (L)	7.00×10^3	3.5×10 ⁻⁵		
	苯		第二次	0.01 (L)	7.46×10^3	3.7×10 ⁻⁵	0.01 (L)	6.76×10^3	3.4×10 ⁻⁵	/	/
			第三次	0.01 (L)	6.87×10 ³	3.4×10 ⁻⁵	0.01 (L)	7.49×10^{3}	3.7×10 ⁻⁵		
	甲苯		第一次	0.01 (L)	6.55×10^3	3.3×10 ⁻⁵	0.02	7.00×10^{3}	1.4×10^{-4}	/	/

			_							
		第二次	0.01 (L)	7.46×10^3	3.7×10 ⁻⁵	1.70	6.76×10^3	1.1×10 ⁻²		
		第三次	0.01 (L)	6.87×10^3	3.4×10 ⁻⁵	1.47	7.49×10^3	1.1×10 ⁻²		
		第一次	0.02 (L)	6.55×10 ³	6.6×10 ⁻⁵	0.02 (L)	7.00×10^{3}	7.0×10 ⁻⁵		
	二甲苯	第二次	0.02 (L)	7.46×10 ³	7.4×10 ⁻⁵	0.13	6.76×10^3	8.8×10 ⁻⁵	/	/
		第三次	0.02 (L)	6.87×10 ³	6.9×10 ⁻⁵	0.10	7.49×10 ³	7.5×10 ⁻⁴		
		第一次	0.01 (L)	6.55×10 ³	3.3×10 ⁻⁵	0.01 (L)	7.00×10^{3}	3.5×10 ⁻⁵		
	三甲苯	第二次	0.01 (L)	7.46×10 ³	3.7×10 ⁻⁵	0.03	6.76×10 ³	2.4×10 ⁻⁴	/	/
		第三次	0.01 (L)	6.87×10 ³	3.4×10 ⁻⁵	0.03	7.49×10 ³	2.2×10 ⁻⁴		
		第一次	0.01 (L)	6.55×10 ³	3.3×10 ⁻⁵	0.01 (L)	7.00×10^{3}	3.5×10 ⁻⁵		
	乙苯	第二次	0.01 (L)	7.46×10 ³	3.7×10 ⁻⁵	0.01 (L)	6.76×10 ³	3.4×10 ⁻⁵	/	/
		第三次	0.01 (L)	6.87×10 ³	3.4×10 ⁻⁵	0.01 (L)	7.49×10 ³	3.7×10 ⁻⁵		
		第一次	0.01 (L)	6.55×10 ³	3.3×10 ⁻⁵	0.01 (L)	7.00×10^{3}	3.5×10 ⁻⁵		
	苯乙烯	第二次	0.01 (L)	7.46×10 ³	3.7×10 ⁻⁵	0.01 (L)	6.76×10^3	3.4×10 ⁻⁵	/	/
		第三次	0.01 (L)	6.87×10 ³	3.4×10 ⁻⁵	0.01 (L)	7.49×10 ³	3.7×10 ⁻⁵		
		第一次	未检出	6.55×10 ³	6.6×10 ⁻⁵	0.02	7.00×10^{3}	1.4×10 ⁻⁴		
	苯系物	第二次	未检出	7.46×10 ³	7.4×10 ⁻⁵	1.86	6.76×10 ³	1.3×10 ⁻²	/	/
		第三次	未检出	6.87×10 ³	6.9×10 ⁻⁵	1.60	7.49×10^{3}	1.2×10 ⁻²		
		第一次	1.38	1.31×10 ⁴	1.8×10 ⁻²	1.62	1.25×10 ⁴	2.0×10 ⁻²		
	#甲烷 总烃	第二次	1.40	1.29×10 ⁴	1.8×10 ⁻²	1.53	1.36×10 ⁴	2.1×10 ⁻²	/	/
	76 AL.	第三次	1.64	1.37×10 ⁴	2.2×10 ⁻²	1.38	1.32×10 ⁴	1.8×10 ⁻²		
		第一次	2 (L)	1.31×10 ⁴	1.3×10 ⁻²	2 (L)	1.25×10 ⁴	1.2×10 ⁻²		
	甲醇	第二次	2 (L)	1.29×10 ⁴	1.3×10 ⁻²	2 (L)	1.36×10 ⁴	1.4×10 ⁻²	/	/
		第三次	2 (L)	1.37×10 ⁴	1.4×10 ⁻²	2 (L)	1.32×10 ⁴	1.3×10 ⁻²		
1		·								

# 大												
中本 第三次 0.01 (L) 1.37×10 ⁴ 6.9×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ³				第一次	0.01 (L)	1.31×10 ⁴	6.6×10 ⁻⁵	0.01 (L)	1.25×10 ⁴	6.2×10 ⁻⁵		
甲苯		苯		第二次	0.01 (L)	1.29×10 ⁴	6.4×10 ⁻⁵	0.01 (L)	1.36×10 ⁴	6.8×10 ⁻⁵	/	/
中本 中本 第二次 0.01(L) 1.29×10 ⁴ 6.6×10 ⁵ 2.00 1.36×10 ⁴ 2.7×10 ² / / 第三次 0.01(L) 1.37×10 ⁴ 6.9×10 ⁵ 2.28 1.32×10 ⁴ 3.0×10 ² 第三次 0.02(L) 1.31×10 ⁴ 1.3×10 ⁴ 0.10 1.25×10 ⁴ 1.2×10 ³ 第三次 0.02(L) 1.37×10 ⁴ 1.4×10 ⁴ 0.13 1.32×10 ⁴ 1.7×10 ³ 第三次 0.01(L) 1.31×10 ⁴ 6.6×10 ⁵ 0.02 1.25×10 ⁴ 2.5×10				第三次	0.01 (L)	1.37×10 ⁴	6.9×10 ⁻⁵	0.01 (L)	1.32×10 ⁴	6.6×10 ⁻⁵		
第三次 0.01 (L) 1.37×10 ⁴ 6.9×10 ⁵ 2.28 1.32×10 ⁴ 3.0×10 ² 第二次 0.02 (L) 1.31×10 ⁴ 1.3×10 ⁴ 0.10 1.25×10 ⁴ 1.2×10 ³ 第二次 0.02 (L) 1.29×10 ⁴ 1.3×10 ⁴ 0.12 1.36×10 ⁴ 1.6×10 ³ / / 第二次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁵ 0.02 1.25×10 ⁴ 2.5×10 ⁴ 2.5×10 ⁴ 第二次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁵ 0.02 1.25×10 ⁴ 2.7×10 ⁴ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁵ 0.11 1.32×10 ⁴ 1.7×10 ³ 第二次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁵ 第二次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁵ 0.01 (L) 1.25×10 ⁴ 6.8×10 ⁵ / / 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁵ / / 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁵ / / 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁵ / / 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁵ / / 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁵ / / 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.8×10 ⁵ / / 第三次 0.01 (L) 1.31×10 ⁴ 0.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 0.6×10 ⁵ / / 第三次 3.3×10 ⁴				第一次	0.02	1.31×10 ⁴	2.6×10 ⁻⁴	2.14	1.25×10 ⁴	2.7×10 ⁻²		
第一次 0.02 (L) 1.31×10 ⁴ 1.3×10 ⁴ 0.10 1.25×10 ⁴ 1.2×10 ³ / / 第三次 0.02 (L) 1.37×10 ⁴ 1.4×10 ⁴ 0.13 1.32×10 ⁴ 1.7×10 ³ / / 第三次 0.01 (L) 1.31×10 ⁴ 6.6×10 ³ 0.02 1.25×10 ⁴ 2.5×10 ⁴ 第三次 0.01 (L) 1.37×10 ⁴ 6.4×10 ³ 0.02 1.36×10 ⁴ 2.7×10 ⁴ / (年) 1.7×10 ⁴ 第三次 0.01 (L) 1.31×10 ⁴ 6.6×10 ³ 0.02 1.36×10 ⁴ 2.7×10 ⁴ / (年) 1.7×10 ⁴ 第三次 0.01 (L) 1.31×10 ⁴ 6.6×10 ³ 0.01 (L) 1.32×10 ⁴ 6.2×10 ⁵ 第二次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.8×10 ⁵ / (年) 1.7×10 ⁴ 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.8×10 ⁵ / (年) 1.7×10 ⁴ 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.8×10 ⁵ / (年) 1.7×10 ⁴ 第三次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁵ 0.01 (L) 1.32×10 ⁴ 6.8×10 ⁵ / (1.25×10 ⁴ 6.8×10 ⁵ (1.25×10 ⁴ 6.		甲苯		第二次	0.01 (L)	1.29×10 ⁴	6.6×10 ⁻⁵	2.00	1.36×10 ⁴	2.7×10 ⁻²	/	/
有机废气 1#处理前 4#				第三次	0.01 (L)	1.37×10 ⁴	6.9×10 ⁻⁵	2.28	1.32×10 ⁴	3.0×10 ⁻²		
A				第一次	0.02 (L)	1.31×10 ⁴	1.3×10 ⁻⁴	0.10	1.25×10 ⁴	1.2×10 ⁻³		
第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.02 1.25×10 ⁴ 2.5×10 ⁻⁴ / / 第三次 0.01 (L) 1.39×10 ⁴ 6.8×10 ⁻⁵ 0.11 1.32×10 ⁴ 1.7×10 ⁻⁴ 第三次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第三次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.8×10 ⁻⁵ / / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ / / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ / / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.8×10 ⁻⁵ / / 第三次 未检出 1.37×10 ⁴ 1.3×10 ⁴ 2.6×10 ⁴ 2.26 1.25×10 ⁴ 2.8×10 ² / / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁴ 2.52 1.32×10 ⁴ 3.3×10 ² / / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁴ 2.52 1.32×10 ⁴ 3.3×10 ² / / 第三次 1.43 3.66×10 ⁴ 5.2×10 ² 1.26 3.77×10 ⁴ 4.8×10 ² 80 / /		二甲苯		第二次	0.02 (L)	1.29×10 ⁴	1.3×10 ⁻⁴	0.12	1.36×10 ⁴	1.6×10 ⁻³	/	/
第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.02 1.36×10 ⁴ 2.7×10 ⁻⁴ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.11 1.32×10 ⁴ 1.7×10 ⁻⁴ 第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第二次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第二次 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第三次 3.31×10 ⁴ 2.6×10 ⁴ 2.26 1.25×10 ⁴ 2.8×10 ⁻² 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁴ 2.14 1.36×10 ⁴ 2.9×10 ² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻²	有机废气 1#处理前 4#		DA018	第三次	0.02 (L)	1.37×10 ⁴	1.4×10 ⁻⁴	0.13	1.32×10 ⁴	1.7×10 ⁻³		
第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.11 1.32×10 ⁴ 1.7×10 ⁻⁴ 第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第二次 0.01 (L) 1.39×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.31×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第二次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁴ 2.26 1.25×10 ⁴ 2.8×10 ⁻² 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁴ 2.14 1.36×10 ⁴ 2.9×10 ² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² / 第三次 未检出 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻²				第一次	0.01 (L)	1.31×10 ⁴	6.6×10 ⁻⁵	0.02	1.25×10 ⁴	2.5×10 ⁻⁴		
第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.6×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.02 1.31×10 ⁴ 2.6×10 ⁻⁴ 2.26 1.25×10 ⁴ 2.8×10 ⁻² 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁴ 2.14 1.36×10 ⁴ 2.9×10 ² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻²		三甲苯		第二次	0.01 (L)	1.29×10 ⁴	6.4×10 ⁻⁵	0.02	1.36×10 ⁴	2.7×10 ⁻⁴	/	/
第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ / 第三次 元次 未检出 1.29×10 ⁴ 1.3×10 ⁻⁴ 2.14 1.36×10 ⁴ 2.9×10 ² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 第一次 1.43 3.66×10 ⁴ 5.2×10 ² 1.26 3.77×10 ⁴ 4.8×10 ² 80 /				第三次	0.01 (L)	1.37×10 ⁴	6.8×10 ⁻⁵	0.11	1.32×10 ⁴	1.7×10 ⁻⁴		
第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.02 1.31×10 ⁴ 2.6×10 ⁻⁴ 2.26 1.25×10 ⁴ 2.8×10 ⁻² 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁻⁴ 2.14 1.36×10 ⁴ 2.9×10 ⁻² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² # 甲烷 第一次 1.43 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻² 80 / 80 / 80 / 80 / 80 / 80 / 80 / 80				第一次	0.01 (L)	1.31×10 ⁴	6.6×10 ⁻⁵	0.01 (L)	1.25×10 ⁴	6.2×10 ⁻⁵		
第一次 0.01 (L) 1.31×10 ⁴ 6.6×10 ⁻⁵ 0.01 (L) 1.25×10 ⁴ 6.2×10 ⁻⁵ 第三次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.02 1.31×10 ⁴ 2.6×10 ⁻⁴ 2.26 1.25×10 ⁴ 2.8×10 ⁻² 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁻⁴ 2.14 1.36×10 ⁴ 2.9×10 ⁻² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 非甲烷 第一次 1.43 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻² 80 /		乙苯		第二次	0.01 (L)	1.29×10 ⁴	6.4×10 ⁻⁵	0.01 (L)	1.36×10 ⁴	6.8×10 ⁻⁵	/	/
第二次 0.01 (L) 1.29×10 ⁴ 6.4×10 ⁻⁵ 0.01 (L) 1.36×10 ⁴ 6.8×10 ⁻⁵ / 第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.02 1.31×10 ⁴ 2.6×10 ⁻⁴ 2.26 1.25×10 ⁴ 2.8×10 ⁻² 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁻⁴ 2.14 1.36×10 ⁴ 2.9×10 ⁻² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 第一次 1.43 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻² 80 /				第三次	0.01 (L)	1.37×10 ⁴	6.8×10 ⁻⁵	0.01 (L)	1.32×10 ⁴	6.6×10 ⁻⁵		
第三次 0.01 (L) 1.37×10 ⁴ 6.8×10 ⁻⁵ 0.01 (L) 1.32×10 ⁴ 6.6×10 ⁻⁵ 第一次 0.02 1.31×10 ⁴ 2.6×10 ⁻⁴ 2.26 1.25×10 ⁴ 2.8×10 ⁻² 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁻⁴ 2.14 1.36×10 ⁴ 2.9×10 ⁻² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 第一次 1.43 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻² 80 / 80 / 80 / 80 / 80 / 80 / 80 / 80				第一次	0.01 (L)	1.31×10 ⁴	6.6×10 ⁻⁵	0.01 (L)	1.25×10 ⁴	6.2×10 ⁻⁵		
第一次 0.02 1.31×10 ⁴ 2.6×10 ⁻⁴ 2.26 1.25×10 ⁴ 2.8×10 ⁻² 第二次 未检出 1.29×10 ⁴ 1.3×10 ⁻⁴ 2.14 1.36×10 ⁴ 2.9×10 ⁻² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 非甲烷 第一次 1.43 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻² 80 /		苯乙烯		第二次	0.01 (L)	1.29×10 ⁴	6.4×10 ⁻⁵	0.01 (L)	1.36×10 ⁴	6.8×10 ⁻⁵	/	/
第二次 未检出 1.29×10 ⁴ 1.3×10 ⁻⁴ 2.14 1.36×10 ⁴ 2.9×10 ⁻² / 第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 非甲烷 第一次 1.43 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻² 80 /				第三次	0.01 (L)	1.37×10 ⁴	6.8×10 ⁻⁵	0.01 (L)	1.32×10 ⁴	6.6×10 ⁻⁵		
第三次 未检出 1.37×10 ⁴ 1.4×10 ⁻⁴ 2.52 1.32×10 ⁴ 3.3×10 ⁻² 非甲烷 第一次 1.43 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻² 80 /				第一次	0.02	1.31×10 ⁴	2.6×10 ⁻⁴	2.26	1.25×10 ⁴	2.8×10 ⁻²		
非甲烷 第一次 1.43 3.66×10 ⁴ 5.2×10 ⁻² 1.26 3.77×10 ⁴ 4.8×10 ⁻² 80 /		苯系物		第二次	未检出	1.29×10 ⁴	1.3×10 ⁻⁴	2.14	1.36×10 ⁴	2.9×10 ⁻²	/	/
80 /				第三次	未检出	1.37×10 ⁴	1.4×10 ⁻⁴	2.52	1.32×10 ⁴	3.3×10 ⁻²		
总烃 第二次 1.44 3.60×10 ⁴ 5.2×10 ⁻² 1.26 3.94×10 ⁴ 5.0×10 ⁻² ⁶⁰ ⁷				第一次	1.43	3.66×10 ⁴	5.2×10 ⁻²	1.26	3.77×10 ⁴	4.8×10 ⁻²	80	,
		总烃		第二次	1.44	3.60×10 ⁴	5.2×10 ⁻²	1.26	3.94×10 ⁴	5.0×10 ⁻²	00	

_												
				第三次	1.52	3.65×10 ⁴	5.5×10 ⁻²	1.32	3.76×10 ⁴	4.9×10 ⁻²		
				第一次	2 (L)	3.66×10 ⁴	3.7×10 ⁻²	2 (L)	3.77×10 ⁴	3.8×10 ⁻⁶		
		甲醇		第二次	2 (L)	3.60×10 ⁴	3.6×10 ⁻²	2 (L)	3.94×10 ⁴	3.9×10 ⁻²	190	3.5
				第三次	2 (L)	3.65×10 ⁴	3.6×10 ⁻²	2 (L)	3.76×10 ⁴	3.7×10 ⁻²		
				第一次	0.01 (L)	3.66×10 ⁴	1.8×10 ⁻⁴	0.01 (L)	3.77×10^4	1.9×10 ⁻⁴		
		苯		第二次	0.01 (L)	3.60×10 ⁴	1.8×10 ⁻⁴	0.01 (L)	3.94×10 ⁴	2.0×10 ⁻⁴	/	/
				第三次	0.01 (L)	3.65×10 ⁴	1.8×10 ⁻⁴	0.01 (L)	3.76×10 ⁴	1.9×10 ⁻⁴		
				第一次	0.01 (L)	3.66×10 ⁴	1.8×10 ⁻⁴	1.66	3.77×10 ⁴	6.2×10 ⁻²		
	有机废气 1#排放口	甲苯	DA018	第二次	0.01 (L)	3.60×10 ⁴	1.8×10 ⁻⁴	1.60	3.94×10 ⁴	6.3×10 ⁻²	/	/
				第三次	0.01 (L)	3.65×10 ⁴	1.8×10 ⁻⁴	0.05	3.76×10 ⁴	1.9×10 ⁻³		
				第一次	0.02 (L)	3.66×10 ⁴	3.7×10 ⁻⁴	0.12	3.77×10 ⁴	4.5×10 ⁻³		
		二甲苯		第二次	0.02 (L)	3.60×10 ⁴	3.6×10 ⁻⁴	0.14	3.94×10 ⁴	5.5×10 ⁻³	/	/
				第三次	0.02 (L)	3.65×10 ⁴	3.6×10 ⁻⁴	0.02 (L)	3.76×10 ⁴	3.7×10 ⁻⁴		
				第一次	0.01 (L)	3.66×10 ⁴	1.8×10 ⁻⁴	0.03	3.77×10 ⁴	1.1×10 ⁻³		
		三甲苯		第二次	0.01 (L)	3.60×10 ⁴	1.8×10 ⁻⁴	0.05	3.94×10 ⁴	2.0×10 ⁻³	/	/
				第三次	0.01 (L)	3.65×10 ⁴	1.8×10 ⁻⁴	0.01	3.76×10 ⁴	3.7×10 ⁻⁴		
				第一次	0.01 (L)	3.66×10 ⁴	1.8×10 ⁻⁴	0.01 (L)	3.77×10 ⁴	3.8×10 ⁻⁴		
		乙苯		第二次	0.01 (L)	3.60×10 ⁴	1.8×10 ⁻⁴	0.01 (L)	3.94×10 ⁴	2.0×10 ⁻⁴	/	/
				第三次	0.01 (L)	3.65×10 ⁴	1.8×10 ⁻⁴	0.01 (L)	3.76×10 ⁴	1.9×10 ⁻⁴		
				第一次	0.01 (L)	3.66×10 ⁴	1.8×10 ⁻⁴	0.01 (L)	3.77×10^4	3.8×10 ⁻⁴		
		苯乙烯		第二次	0.01 (L)	3.60×10^4	1.8×10 ⁻⁴	0.01 (L)	3.94×10^4	2.0×10 ⁻⁴	/	/
		7T C /"H		第三次	0.01 (L)	3.65×10^4	1.8×10 ⁻⁴	0.01 (L)	3.76×10^4	1.9×10 ⁻⁴	,	,
		苯系物		第一次	未检出	3.66×10^4	3.7×10 ⁻⁴	1.81	3.77×10^4	6.8×10 ⁻²	40	/
		7 N 10		和 以	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5.00^10	3.7.10	1.01	3.77^10	0.0^10	70	,

			第二次	未检出	3.60×10 ⁴	3.6×10 ⁻⁴	1.79	3.94×10 ⁴	7.0×10 ⁻²		
			第三次	未检出	3.65×10 ⁴	3.6×10 ⁻⁴	0.06	3.76×10^4	2.2×10 ⁻³		
	그는 다그 나라		第一次	1.60	4.47×10 ³	7.2×10 ⁻³	1.61	5.03×10 ³	8.1×10 ⁻³		
	非甲烷 总烃		第二次	1.72	4.04×10^{3}	6.9×10 ⁻³	1.74	4.75×10^3	8.3×10 ⁻³	/	/
	75.75		第三次	1.68	4.71×10 ³	7.9×10 ⁻³	1.69	5.16×10 ³	8.7×10 ⁻³		
			第一次	2 (L)	4.47×10 ³	4.5×10 ⁻³	2 (L)	5.03×10 ³	5.0×10 ⁻³		
	甲醇		第二次	2 (L)	4.04×10 ³	4.0×10 ⁻³	2 (L)	4.75×10^3	4.8×10 ⁻³	/	/
			第三次	2 (L)	4.71×10 ³	4.7×10 ⁻³	2 (L)	5.16×10^3	5.2×10 ⁻³		
			第一次	0.01 (L)	4.47×10 ³	2.2×10 ⁻⁵	0.01 (L)	5.03×10 ³	2.5×10 ⁻⁵		
	苯		第二次	0.01 (L)	4.04×10^{3}	2.0×10 ⁻⁵	0.01 (L)	4.75×10 ³	2.4×10 ⁻⁵	/	/
			第三次	0.01 (L)	4.71×10 ³	2.4×10 ⁻⁵	0.01 (L)	5.16×10^3	2.6×10 ⁻⁵		
			第一次	0.01	4.47×10 ³	4.5×10 ⁻⁵	0.41	5.03×10 ³	2.1×10 ⁻³		
有机废气 2#处理前 1#	甲苯	DA019	第二次	0.02	4.04×10 ³	8.1×10 ⁻⁵	1.07	4.75×10 ³	5.1×10 ⁻³	/	/
			第三次	0.01	4.71×10 ³	4.7×10 ⁻⁵	0.01 (L)	5.16×10 ³	2.6×10 ⁻⁵		
			第一次	0.02 (L)	4.47×10 ³	4.5×10 ⁻⁵	0.02 (L)	5.03×10 ³	5.0×10 ⁻⁵		
	二甲苯		第二次	0.02 (L)	4.04×10 ³	4.0×10 ⁻⁵	0.02 (L)	4.75×10 ³	4.8×10 ⁻⁵	/	/
			第三次	0.02 (L)	4.71×10 ³	4.7×10 ⁻⁵	0.02 (L)	5.16×10 ³	5.1×10 ⁻⁵		
			第一次	0.01 (L)	4.47×10 ³	2.2×10 ⁻⁵	0.01 (L)	5.03×10 ³	2.5×10 ⁻⁵		
	三甲苯		第二次	0.01 (L)	4.04×10 ³	2.0×10 ⁻⁵	0.02	4.75×10 ³	2.6×10 ⁻⁵	/	/
			第三次	0.01 (L)	4.71×10 ³	2.4×10 ⁻⁵	0.01 (L)	5.16×10 ³	2.6×10 ⁻⁵		
			第一次	0.01 (L)	4.47×10 ³	2.2×10 ⁻⁵	0.01 (L)	5.03×10 ³	2.5×10 ⁻⁵		
	乙苯		第二次	0.01 (L)	4.04×10 ³	2.0×10 ⁻⁵	0.01 (L)	4.75×10 ³	2.4×10 ⁻⁵	/	/
			第三次	0.01 (L)	4.71×10 ³	2.4×10 ⁻⁵	0.01 (L)	5.16×10 ³	2.6×10 ⁻⁵		

			第一次	0.01 (L)	4.47×10 ³	2.2×10 ⁻⁵	0.01 (L)	5.03×10 ³	2.5×10 ⁻⁵		
	苯乙烯		第二次	0.01 (L)	4.04×10^{3}	2.0×10 ⁻⁵	0.01 (L)	4.75×10^3	2.4×10 ⁻⁵	/	/
			第三次	0.01 (L)	4.71×10 ³	2.4×10 ⁻⁵	0.01 (L)	5.16×10 ³	2.6×10 ⁻⁵		
			第一次	0.01	4.47×10 ³	4.5×10 ⁻⁵	0.41	5.03×10 ³	2.1×10 ⁻³		
	苯系物		第二次	0.02	4.04×10 ³	8.1×10 ⁻⁵	1.09	4.75×10 ³	5.2×10 ⁻³	/	/
			第三次	0.01	4.71×10 ³	4.7×10 ⁻⁵	未检出	5.16×10 ³	5.1×10 ⁻⁵		
	11 12 12		第一次	1.56	7.95×10^3	1.2×10 ⁻²	1.48	8.31×10^{3}	1.2×10 ⁻²		
	非甲烷 总烃		第二次	1.72	7.76×10^3	1.3×10 ⁻²	1.68	8.17×10^{3}	1.4×10 ⁻²	/	/
	7676		第三次	1.66	7.84×10^{3}	1.3×10 ⁻²	1.39	8.22×10 ³	1.1×10 ⁻²		
			第一次	2 (L)	7.95×10^{3}	8.0×10 ⁻³	2 (L)	8.31×10 ³	8.3×10 ⁻³		
	甲醇		第二次	2 (L)	7.76×10 ³	7.8×10 ⁻³	2 (L)	8.17×10 ³	8.2×10 ⁻³	/	/
			第三次	2 (L)	7.84×10^{3}	7.8×10 ⁻³	2 (L)	8.22×10 ³	8.2×10 ⁻³		
			第一次	0.01 (L)	7.95×10^3	4.0×10 ⁻⁵	0.01 (L)	8.31×10^{3}	4.2×10 ⁻⁵		
	苯		第二次	0.01 (L)	7.76×10 ³	3.9×10 ⁻⁵	0.01 (L)	8.17×10 ³	4.1×10 ⁻⁵	/	/
有机废气 2#处理前 2#		DA019	第三次	0.01 (L)	7.84×10^{3}	3.9×10 ⁻⁵	0.01 (L)	8.22×10 ³	4.1×10 ⁻⁵		
			第一次	0.09	7.95×10^3	7.2×10 ⁻⁴	0.61	8.31×10 ³	5.1×10 ⁻³		
	甲苯		第二次	0.03	7.76×10 ³	2.3×10 ⁻⁴	0.06	8.17×10 ³	4.9×10 ⁻⁴	/	/
			第三次	0.07	7.84×10^{3}	5.5×10 ⁻⁴	0.03	8.22×10 ³	2.5×10 ⁻⁴		
			第一次	0.02 (L)	7.95×10^{3}	8.0×10 ⁻⁵	0.02 (L)	8.31×10 ³	8.3×10 ⁻⁵		
二甲	二甲苯		第二次	0.02 (L)	7.76×10 ³	7.8×10 ⁻⁵	0.02 (L)	8.17×10 ³	8.2×10 ⁻⁵	/	/
			第三次	0.02 (L)	7.84×10^{3}	7.8×10 ⁻⁵	0.02 (L)	8.22×10 ³	8.2×10 ⁻⁵		
	三甲苯		第一次	0.01 (L)	7.95×10 ³	4.0×10 ⁻⁵	0.01 (L)	8.31×10 ³	4.2×10 ⁻⁵	,	
	二甲平		第二次	0.01 (L)	7.76×10^3	3.9×10 ⁻⁵	0.02	8.17×10 ³	1.6×10 ⁻⁴	/	/
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				_

			第三次	0.01 (L)	7.84×10^{3}	3.9×10 ⁻⁵	0.02	8.22×10 ³	1.6×10 ⁻⁴		
			第一次	0.01 (L)	7.95×10^3	4.0×10 ⁻⁵	0.01 (L)	8.31×10^{3}	4.2×10 ⁻⁵		
	乙苯		第二次	0.01 (L)	7.76×10^{3}	3.9×10 ⁻⁵	0.01 (L)	8.17×10^{3}	4.1×10 ⁻⁵	/	/
			第三次	0.01 (L)	7.84×10^{3}	3.9×10 ⁻⁵	0.01 (L)	8.22×10^{3}	4.1×10 ⁻⁵		
			第一次	0.01 (L)	7.95×10^{3}	4.0×10 ⁻⁵	0.01 (L)	8.31×10^{3}	4.2×10 ⁻⁵		
	苯乙烯		第二次	0.01 (L)	7.76×10^{3}	3.9×10 ⁻⁵	0.01 (L)	8.17×10^{3}	4.1×10 ⁻⁵	/	/
			第三次	0.01 (L)	7.84×10^{3}	3.9×10 ⁻⁵	0.01 (L)	8.22×10 ³	4.1×10 ⁻⁵		
			第一次	0.09	7.95×10^{3}	7.2×10 ⁻⁴	0.61	8.31×10^{3}	5.1×10 ⁻³		
	苯系物		第二次	0.03	7.76×10^{3}	2.3×10 ⁻⁴	0.08	8.17×10^3	6.5×10 ⁻⁴	/	/
			第三次	0.07	7.84×10^{3}	5.5×10 ⁻⁴	0.05	8.22×10 ³	4.1×10 ⁻⁴		
	-16 FT 6-5		第一次	1.59	4.29×10 ³	6.8×10 ⁻³	2.02	3.74×10^{3}	7.6×10 ⁻³		
	非甲烷 总烃		第二次	1.70	3.20×10^{3}	5.4×10 ⁻³	2.41	4.91×10 ³	1.2×10 ⁻²	/	/
	73.7		第三次	1.77	3.28×10^{3}	5.8×10 ⁻³	2.53	4.24×10 ³	1.1×10 ⁻²		
			第一次	2 (L)	4.29×10 ³	4.3×10 ⁻³	2 (L)	3.74×10^{3}	3.7×10 ⁻³		
	甲醇		第二次	2 (L)	3.20×10^3	3.3×10 ⁻³	2 (L)	4.91×10^{3}	4.9×10 ⁻³	/	/
			第三次	2 (L)	3.28×10^{3}	3.3×10 ⁻³	2 (L)	4.24×10 ³	4.2×10 ⁻³		
有机废气 2#处理前 3#		DA019	第一次	0.01 (L)	4.29×10 ³	2.1×10 ⁻⁵	0.01 (L)	3.74×10^{3}	1.9×10 ⁻⁵		
	苯		第二次	0.01 (L)	3.20×10^3	1.6×10 ⁻⁵	0.01 (L)	4.91×10 ³	2.5×10 ⁻⁵	/	/
			第三次	0.01 (L)	3.28×10^{3}	1.6×10 ⁻⁵	0.02	4.24×10 ³	8.5×10 ⁻⁵		
			第一次	0.02	4.29×10 ³	8.6×10 ⁻⁵	0.01 (L)	3.74×10^{3}	1.9×10 ⁻⁵		
	甲苯		第二次	0.01	3.20×10^3	3.2×10 ⁻⁵	0.09	4.91×10 ³	4.4×10 ⁻⁴	/	/
			第三次	0.01	3.28×10^3	3.3×10 ⁻⁵	0.25	4.24×10 ³	1.1×10 ⁻³		
	二甲苯		第一次	0.02 (L)	4.29×10 ³	4.3×10 ⁻⁵	0.02 (L)	3.74×10^3	3.7×10 ⁻⁵	/	/

			第二次	0.02 (L)	3.20×10^3	6.4×10 ⁻⁵	0.02 (L)	4.91×10 ³	4.9×10 ⁻⁵		
			第三次	0.02 (L)	3.28×10^3	3.3×10 ⁻⁵	0.02 (L)	4.24×10^{3}	4.2×10 ⁻⁵		
			第一次	0.01 (L)	4.29×10 ³	2.1×10 ⁻⁵	0.05	3.74×10^{3}	1.9×10 ⁻⁴		
	三甲苯		第二次	0.01 (L)	3.20×10^{3}	1.6×10 ⁻⁵	0.01	4.91×10^{3}	4.9×10 ⁻⁵	/	/
			第三次	0.01 (L)	3.28×10^{3}	1.6×10 ⁻⁵	0.01	4.24×10 ³	4.2×10 ⁻⁵		
			第一次	0.01 (L)	4.29×10 ³	2.1×10 ⁻⁵	0.01 (L)	3.74×10^{3}	1.9×10 ⁻⁵		
	乙苯		第二次	0.01 (L)	3.20×10 ³	1.6×10 ⁻⁵	0.01 (L)	4.91×10 ³	2.4×10 ⁻⁵	/	/
			第三次	0.01 (L)	3.28×10 ³	1.6×10 ⁻⁵	0.01 (L)	4.24×10 ³	2.1×10 ⁻⁵		
			第一次	0.01 (L)	4.29×10 ³	2.1×10 ⁻⁵	0.01 (L)	3.74×10^{3}	1.9×10 ⁻⁵		
	苯乙烯		第二次	0.01 (L)	3.20×10 ³	1.6×10 ⁻⁵	0.01 (L)	4.91×10 ³	2.4×10 ⁻⁵	/	/
			第三次	0.01 (L)	3.28×10 ³	1.6×10 ⁻⁵	0.01 (L)	4.24×10 ³	2.1×10 ⁻⁵		
			第一次	0.02	4.29×10 ³	8.6×10 ⁻⁵	0.05	3.74×10^{3}	1.9×10 ⁻⁴		
	苯系物		第二次	0.03	3.20×10 ³	9.6×10 ⁻⁵	0.10	4.91×10 ³	4.9×10 ⁻⁴	/	/
			第三次	0.01	3.28×10 ³	3.3×10 ⁻⁵	0.28	4.24×10 ³	1.2×10 ⁻³		
	11 10		第一次	1.91	4.92×10 ³	9.4×10 ⁻³	2.20	8.99×10^{3}	2.0×10 ⁻²		
	非甲烷 总烃		第二次	2.01	6.92×10 ³	1.4×10 ⁻²	1.81	8.09×10^{3}	1.5×10 ⁻²	/	/
			第三次	1.99	6.55×10 ³	1.3×10 ⁻²	1.67	8.09×10^{3}	1.4×10 ⁻²		
			第一次	2 (L)	4.92×10 ³	4.9×10 ⁻³	2 (L)	8.99×10 ³	9.0×10 ⁻³		
有机废气 2#处理前 4#	甲醇	DA019	第二次	2 (L)	6.92×10 ³	6.9×10 ⁻³	2 (L)	8.09×10^{3}	8.1×10 ⁻³	/	/
			第三次	2 (L)	6.55×10 ³	6.6×10 ⁻³	2 (L)	8.09×10^{3}	8.1×10 ⁻³		
			第一次	0.01 (L)	4.92×10 ³	2.5×10 ⁻⁵	0.01 (L)	8.99×10 ³	4.5×10 ⁻⁵		
	苯		第二次	0.01 (L)	6.92×10 ³	3.5×10 ⁻⁵	0.01 (L)	8.09×10^{3}	4.0×10 ⁻⁵	/	/
			第三次	0.01 (L)	6.55×10 ³	3.3×10 ⁻⁵	0.01 (L)	8.09×10 ³	4.0×10 ⁻⁵		

_											_
			第一次	0.04	4.92×10 ³	2.0×10 ⁻⁴	0.01 (L)	8.99×10 ³	4.5×10 ⁻⁵		
	甲苯		第二次	0.01	6.92×10^3	6.9×10 ⁻⁵	0.02	8.09×10^{3}	1.6×10 ⁻⁴	/	
			第三次	0.01 (L)	6.55×10^3	3.3×10 ⁻⁵	0.01 (L)	8.09×10^{3}	4.0×10 ⁻⁵		
			第一次	0.03	4.92×10 ³	1.5×10 ⁻⁴	0.02 (L)	8.99×10 ³	9.0×10 ⁻⁵		
	二甲苯		第二次	0.02 (L)	6.92×10 ³	6.9×10 ⁻⁵	0.02 (L)	8.09×10 ³	8.1×10 ⁻⁵	/	
			第三次	0.02 (L)	6.55×10 ³	6.6×10 ⁻⁵	0.02 (L)	8.09×10 ³	8.1×10 ⁻⁵		
			第一次	0.01 (L)	4.92×10 ³	2.5×10 ⁻⁵	0.02	8.99×10 ³	1.8×10 ⁻⁴		
	三甲苯		第二次	0.01 (L)	6.92×10 ³	3.5×10 ⁻⁵	0.01	8.09×10 ³	8.1×10 ⁻⁵	/	
			第三次	0.01 (L)	6.55×10 ³	3.3×10 ⁻⁵	0.01 (L)	8.09×10 ³	4.0×10 ⁻⁵		
			第一次	0.01 (L)	4.92×10 ³	2.5×10 ⁻⁵	0.01 (L)	8.99×10 ³	4.5×10 ⁻⁵		
	乙苯		第二次	0.01 (L)	6.92×10 ³	3.5×10 ⁻⁵	0.01 (L)	8.09×10^{3}	4.0×10 ⁻⁵	/	
			第三次	0.01 (L)	6.55×10^3	3.3×10 ⁻⁵	0.01 (L)	8.09×10^{3}	4.0×10 ⁻⁵		
			第一次	0.01 (L)	4.92×10 ³	2.5×10 ⁻⁵	0.01 (L)	8.99×10^{3}	4.5×10 ⁻⁵		
	苯乙烯		第二次	0.01 (L)	6.92×10^3	3.5×10 ⁻⁵	0.01 (L)	8.09×10^{3}	4.0×10 ⁻⁵	/	
			第三次	0.01 (L)	6.55×10^3	3.3×10 ⁻⁵	0.01 (L)	8.09×10^{3}	4.0×10 ⁻⁵		
			第一次	0.07	4.92×10 ³	3.4×10 ⁻⁴	0.02	8.99×10 ³	1.8×10 ⁻⁴		
	苯系物		第二次	0.01	6.92×10 ³	6.9×10 ⁻⁵	0.03	8.09×10 ³	2.4×10 ⁻⁴	/	
			第三次	未检出	6.55×10 ³	6.6×10 ⁻⁵	未检出	8.09×10 ³	8.1×10 ⁻⁵		
	11 11 12		第一次	1.66	5.62×10 ³	9.3×10 ⁻³	1.35	7.15×10^3	9.6×10 ⁻³		
有机废气 2#处理前 5#	非甲烷 总烃		第二次	1.63	7.08×10^3	1.2×10 ⁻²	1.30	7.15×10^3	1.3×10 ⁻²	/	
	/E//EL	DA019	第三次	1.50	5.26×10 ³	7.9×10 ⁻³	1.34	6.81×10 ³	9.3×10 ⁻³		
	田疃		第一次	2 (L)	5.62×10 ³	5.6×10 ⁻³	2 (L)	7.15×10^{3}	7.2×10 ⁻³	,	
	甲醇		第二次	2 (L)	7.08×10 ³	7.1×10 ⁻³	2 (L)	7.15×10^3	1.1×10 ⁻⁶	/	

	第三次	2 (L)	5.26×10 ³	5.3×10 ⁻³	2 (L)	6.81×10^{3}	6.8×10 ⁻³		
	第一次	0.01 (L)	5.62×10^3	2.8×10 ⁻⁵	0.01 (L)	7.15×10^3	3.6×10 ⁻⁵		
苯	第二次	0.01 (L)	7.08×10^{3}	3.5×10 ⁻⁵	0.01 (L)	7.15×10^3	7.2×10 ⁻³	/	/
	第三次	0.01 (L)	5.26×10 ³	2.6×10 ⁻⁵	0.01 (L)	6.81×10^{3}	3.4×10 ⁻⁵		
	第一次	0.02	5.62×10 ³	1.1×10 ⁻⁴	0.01 (L)	7.15×10^3	3.6×10 ⁻⁵		
甲苯	第二次	0.01	7.08×10^3	7.1×10 ⁻⁵	0.01 (L)	7.15×10^3	3.6×10 ⁻⁵	/	/
	第三次	0.01 (L)	5.26×10 ³	2.6×10 ⁻⁵	0.01 (L)	6.81×10 ³	3.4×10 ⁻⁵		
	第一次	0.02	5.62×10 ³	1.1×10 ⁻⁴	0.02 (L)	7.15×10^3	7.2×10 ⁻⁵		
二甲苯	第二次	0.02 (L)	7.08×10^{3}	7.1×10 ⁻⁵	0.02 (L)	7.15×10^3	3.6×10 ⁻⁵	/	/
	第三次	0.02 (L)	5.26×10 ³	5.3×10 ⁻³	0.02 (L)	6.81×10^{3}	6.8×10 ⁻⁵		
	第一次	0.01 (L)	5.62×10 ³	2.8×10 ⁻⁵	0.01 (L)	7.15×10^3	3.6×10 ⁻⁵		
三甲苯	第二次	0.01 (L)	7.08×10^{3}	3.5×10 ⁻⁵	0.01 (L)	7.15×10^3	7.2×10 ⁻⁵	/	/
	第三次	0.01 (L)	5.26×10^3	2.6×10 ⁻⁵	0.01 (L)	6.81×10^{3}	3.4×10 ⁻⁵		
	第一次	0.01 (L)	5.62×10 ³	2.8×10 ⁻⁵	0.01 (L)	7.15×10^3	3.6×10 ⁻⁵		
乙苯	第二次	0.01 (L)	7.08×10^3	3.5×10 ⁻⁵	0.01 (L)	7.15×10^3	3.6×10 ⁻⁵	/	/
	第三次	0.01 (L)	5.26×10 ³	2.6×10 ⁻⁵	0.01 (L)	6.81×10 ³	3.4×10 ⁻⁵		
	第一次	0.01 (L)	5.62×10 ³	2.8×10 ⁻⁵	0.01 (L)	7.15×10^3	3.6×10 ⁻⁵		
苯乙烯	第二次	0.01 (L)	7.08×10^{3}	3.5×10 ⁻⁵	0.01 (L)	7.15×10^3	3.6×10 ⁻⁵	/	/
	第三次	0.01 (L)	5.26×10 ³	2.6×10 ⁻⁵	0.01 (L)	6.81×10^{3}	3.4×10 ⁻⁵		
	第一次	0.04	5.62×10 ³	5.6×10 ⁻⁵	未检出	7.15×10^3	7.2×10 ⁻⁵		
 苯系物	第二次	0.01	7.08×10^3	3.5×10 ⁻⁵	未检出	7.15×10^3	3.6×10 ⁻⁵	/	/
777111	第三次	未检出	5.26×10 ³	5.3×10 ⁻³	未检出	6.81×10^{3}	6.8×10 ⁻⁵	,	,

		나 다 나는		第一次	1.76	3.86×10 ⁴	6.8×10 ⁻²	1.80	3.79×10 ⁴	6.8×10 ⁻²							
		非甲烷 总烃		第二次	1.61	3.99×10 ⁴	6.4×10 ⁻²	2.01	4.37×10 ⁴	8.8×10 ⁻²	80	/					
		75.75		第三次	1.92	3.92×10 ⁴	7.5×10 ⁻²	1.92	4.18×10 ⁴	8.0×10 ⁻²							
				第一次	2 (L)	3.86×10 ⁴	3.9×10 ⁻²	2 (L)	3.79×10 ⁴	4.0×10 ⁻²							
		甲醇		第二次	2 (L)	3.99×10 ⁴	4.0×10 ⁻²	2 (L)	4.37×10 ⁴	4.4×10 ⁻²	190	3.5					
				第三次	2 (L)	3.92×10 ⁴	3.9×10 ⁻²	2 (L)	4.18×10 ⁴	4.4×10 ⁻²							
				第一次	0.01 (L)	3.86×10 ⁴	1.9×10 ⁻⁴	0.01 (L)	3.79×10 ⁴	1.9×10 ⁻⁴							
		苯		第二次	0.01 (L)	3.99×10 ⁴	2.0×10 ⁻⁴	0.01 (L)	4.37×10 ⁴	2.2×10 ⁻⁴	/	/					
				第三次	0.01 (L)	3.92×10 ⁴	2.0×10 ⁻⁴	0.01 (L)	4.18×10 ⁴	2.1×10 ⁻⁴							
				第一次	0.02	3.86×10 ⁴	7.7×10 ⁻⁴	0.01 (L)	3.79×10 ⁴	1.9×10 ⁻⁴							
		甲苯 DA		第二次	0.04	3.99×10 ⁴	1.6×10 ⁻³	0.04	4.37×10 ⁴	1.7×10 ⁻³	/	/					
	有机废气 2#排放口		DA019	第三次	0.01 (L)	3.92×10 ⁴	2.0×10 ⁻⁴	0.01 (L)	4.18×10 ⁴	2.1×10 ⁻⁴							
				第一次	0.02	3.86×10 ⁴	7.7×10 ⁻⁴	0.02 (L)	3.79×10 ⁴	3.8×10 ⁻⁴							
		二甲苯							第二次	0.04	3.99×10 ⁴	1.6×10 ⁻³	0.02 (L)	4.37×10 ⁴	4.4×10 ⁻⁴	/	/
				第三次	0.02 (L)	3.92×10 ⁴	3.9×10 ⁻⁴	0.02 (L)	4.18×10 ⁴	4.2×10 ⁻⁴							
				第一次	0.01 (L)	3.86×10 ⁴	1.9×10 ⁻⁴	0.01 (L)	3.79×10 ⁴	1.9×10 ⁻⁴							
		三甲苯		第二次	0.01 (L)	3.99×10 ⁴	2.0×10 ⁻⁴	0.01 (L)	4.37×10 ⁴	2.2×10 ⁻⁴	/	/					
				第三次	0.01 (L)	3.92×10 ⁴	2.0×10 ⁻⁴	0.07	4.18×10 ⁴	2.9×10 ⁻³							
					0.01 (L)	3.86×10 ⁴	1.9×10 ⁻⁴	0.01 (L)	3.79×10 ⁴	1.9×10 ⁻⁴							
		乙苯		第二次	0.01 (L)	3.99×10 ⁴	2.0×10 ⁻⁴	0.01 (L)	4.37×10 ⁴	2.2×10 ⁻⁴	/	/					
				第三次	0.01 (L)	3.92×10 ⁴	2.0×10 ⁻⁴	0.01 (L)	4.18×10 ⁴	2.1×10 ⁻⁴							
		サフル		第一次	0.01 (L)	3.86×10 ⁴	1.9×10 ⁻⁴	0.01 (L)	3.79×10 ⁴	1.9×10 ⁻⁴	,						
		苯乙烯		第二次	0.01 (L)	3.99×10 ⁴	2.0×10 ⁻⁴	0.01 (L)	4.37×10 ⁴	2.2×10 ⁻⁴	/	/					

						1						
				第三次	0.01 (L)	3.92×10 ⁴	2.0×10 ⁻⁴	0.01 (L)	4.18×10 ⁴	2.1×10 ⁻⁴		
				第一次	0.04	3.86×10^4	1.5×10 ⁻³	未检出	3.79×10^4	3.8×10 ⁻⁴		
		苯系物		第二次	0.08	3.99×10 ⁴	3.2×10 ⁻³	0.04	4.37×10 ⁴	1.7×10 ⁻³	40	/
				第三次	未检出	3.92×10 ⁴	3.9×10 ⁻²	0.07	4.18×10 ⁴	2.9×10 ⁻³		
	 有机废气	II. III leb		第一次	1.60	1.11×10 ⁴	1.8×10 ⁻²	1.70	1.32×10 ⁴	2.2×10 ⁻²		
	排放口	非甲烷 总烃	DA023	第二次	1.43	1.08×10 ⁴	1.5×10 ⁻²	1.90	1.22×10 ⁴	2.3×10 ⁻²	/	/
	处理前 1#	73.72		第三次	1.67	1.48×10 ⁴	2.5×10 ⁻²	1.78	9.71×10^{3}	1.7×10 ⁻²		
	 有机废气	11 1.5		第一次	1.63	1.22×10 ⁴	2.0×10 ⁻²	1.73	1.00×10 ⁴	1.7×10 ⁻²		
	排放口	非甲烷 总烃	DA023	第二次	1.60	9.63×10 ³	1.5×10 ⁻²	2.24	1.07×10 ⁴	2.4×10 ⁻²	/	/
8 栋	处理前 2#	76791		第三次	1.84	1.08×10 ⁴	2.0×10 ⁻²	1.98	1.06×10 ⁴	2.1×10 ⁻²		
0 1/1	 有机废气	11 12 12		第一次	1.67	2.27×10 ³	3.8×10 ⁻³	1.77	2.11×10^{3}	3.7×10 ⁻³		
	排放口	非甲烷 总烃	DA023	第二次	1.76	2.42×10 ³	4.2×10 ⁻³	1.79	2.18×10 ³	3.9×10 ⁻³	/	/
	处理前 3#	76791		第三次	1.75	2.10×10 ³	3.7×10 ⁻³	1.79	1.48×10 ³	2.6×10 ⁻³		
	 有机废气	11 1.5		第一次	1.93	1.96×10 ⁴	3.8×10 ⁻²	1.93	2.15×10 ⁴	4.1×10 ⁻²		
	排放口	非甲烷 总烃	DA023	第二次	1.74	2.05×10 ⁴	3.6×10 ⁻²	2.13	2.03×10 ⁴	4.3×10 ⁻²	80	/
	处理后	76. XI.		第三次	1.94	2.19×10 ⁴	4.2×10 ⁻²	1.60	1.91×10 ⁴	3.0×10 ⁻²		
) 1 <u>-</u>	NA 010 DA 010 批 与 然 宣	richae D	1000世年	66	D 4 0 1 0 D 4 (P - 111. 3.1. 1	1 / 12	/ FT ->- >= >4- >4	F 107 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ it . t.i. t	1.)./. 1 >./). "

注: 1.DA018、DA019排气筒高度20m, DA023排气筒高度15m, DA018、DA019、DA023废气排放执行广东省《固定污染源挥发性有机物综合排放标准》 (DB44/2367-2022)表1排放限值。

^{2.}检测结果小于检出限或未检出以"检出限(L)"表示。

^{3.}苯系物包括苯、甲苯、二甲苯、三甲苯、乙苯、苯乙烯。

					检测组	告果(2025.0	4.09)	检测约	5果(2025.0	04.10)	排放	限值
采	岸点位	检测项目	检测点位及频次		排放浓度 mg/m³	排放风量 m³/h	排放速率 kg/h	排放浓度 mg/m³	排放风 量 m³/h	排放速率 kg/h	排放浓 度 mg/m³	排放速 率 kg/h
				第一次	1.92	1.55×10 ³	3.0×10 ⁻³	3.36	1.55×10^3	5.2×10 ⁻³		
		非甲烷总烃		第二次	2.00	1.54×10 ³	3.0×10 ⁻³	8.94	1.64×10^3	1.5×10 ⁻²	/	/
				第三次	4.23	1.59×10 ³	3.8×10 ⁻³	9.94	1.86×10^3	1.8×10 ⁻²		
	综合废气			第一次	0.0003 (L)	1.55×10 ³	2.3×10 ⁻⁷	0.0003 (L)	1.55×10^3	4.6×10 ⁻⁷		
	排放口	锡及其化合物	DA020	第二次	0.0003 (L)	1.54×10^3	2.3×10 ⁻⁷	0.0003 (L)	1.64×10^3	2.5×10 ⁻⁷	/	/
	处理前			第三次	0.0003 (L)	1.59×10 ³	3.4×10 ⁻⁷	0.0003 (L)	1.86×10 ³	2.8×10 ⁻⁷		
		颗粒物		第一次	<20	1.55×10^3	<3.1×10 ⁻²	<20	1.55×10^3	<3.1×10 ⁻²		
				第二次	<20	1.54×10 ³	<3.1×10 ⁻²	<20	1.64×10 ³	<3.3×10 ⁻²	/	/
. 14.				第三次	<20	1.59×10 ³	<4.5×10 ⁻²	<20	1.86×10^{3}	<3.7×10 ⁻²		
4 栋				第一次	1.70	2.19×10 ³	3.8×10 ⁻³	1.82	2.67×10^{3}	4.9×10 ⁻³	80	
		非甲烷总烃		第二次	1.46	2.24×10^{3}	3.3×10 ⁻³	2.12	2.41×10^{3}	5.1×10 ⁻³		/
				第三次	1.90	2.24×10 ³	4.2×10 ⁻³	1.96	2.47×10 ³	4.8×10 ⁻³		
				第一次	0.0003 (L)	2.19×10 ³	3.4×10 ⁻⁷	0.0003 (L)	2.67×10 ³	4.0×10 ⁻⁷		
	综合废气 排放口 处理后	锡及其化合物	DA020	第二次	0.0003 (L)	2.24×10 ³	3.4×10 ⁻⁷	0.0003 (L)	2.41×10 ³	<3.6×10 ⁻⁶	8.5	0.215
			DA020	第三次	0.0003 (L)	2.24×10 ³	3.4×10 ⁻⁷	0.0003 (L)	2.47×10 ³	7.4×10 ⁻⁷		
				第一次	<20	2.19×10 ³	<4.5×10 ⁻²	<20	2.67×10 ³	<5.3×10 ⁻²		
		 颗粒物		第二次	<20	2.24×10 ³	<4.5×10 ⁻²	<20	2.41×10 ³	<4.8×10 ⁻²	120	2.4
			75/12 12	第三次	<20	2.24×10 ³	<4.5×10 ⁻²	<20	2.47×10 ³	<4.9×10 ⁻²	120	

	酸性废气			第一次	0.2 (L)	2.13×10 ³	2.1×10 ⁻⁴	0.30	2.44×10 ³	7.3×10 ⁻⁴		
	排放口1#	硫酸雾	DA021	第二次	0.2 (L)	2.22×10 ³	2.2×10 ⁻⁴	0.2 (L)	2.28×10 ³	2.3×10 ⁻⁴	/	/
	处理前			第三次	0.2 (L)	2.13×10 ³	2.1×10 ⁻⁴	0.28	2.46×10 ³	6.9×10 ⁻⁴		
	酸性废气			第一次	0.2 (L)	2.33×10 ³	2.3×10 ⁻⁴	0.2 (L)	2.23×10 ³	2.2×10 ⁻⁴		
	排放口1#	硫酸雾	DA021	第二次	0.2 (L)	2.34×10 ³	2.3×10 ⁻⁴	0.2 (L)	2.28×10 ³	2.3×10 ⁻⁴	35	1.1
	处理后			第三次	0.2 (L)	2.46×10 ³	2.5×10 ⁻⁴	0.2 (L)	2.14×10 ³	2.1×10 ⁻⁴		
	酸性废气			第一次	0.48	1.59×10 ³	7.6×10 ⁻⁴	0.46	1.23×10 ³	5.7×10 ⁻⁴		
	排放口2#	氯化氢	DA022	第二次	0.2 (L)	1.87×10 ³	1.9×10 ⁻⁴	0.46	1.37×10 ³	6.3×10 ⁻⁴		
	处理前			第三次	0.2 (L)	1.43×10 ³	1.4×10 ⁻⁴	0.47	1.49×10 ³	7.0×10 ⁻⁴		
	酸性废气			第一次	0.38	1.68×10 ³	6.4×10 ⁻⁴	0.40	1.27×10 ³	5.1×10 ⁻⁴		
	排放口2#	氯化氢	DA022	第二次	0.2 (L)	1.79×10 ³	1.8×10 ⁻⁴	0.39	1.26×10 ³	4.9×10 ⁻⁴	100	0.18
	处理后			第三次	0.2 (L)	1.58×10 ³	1.6×10 ⁻⁴	0.39	1.44×10 ³	5.6×10 ⁻⁴		
1			•		1			1	1			

注: 1.DA020、DA021、DA022排气筒高度20m, DA020排气筒废气排放执行广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表1 排放限值及广东省《大气污染物排放限值》(DB44/27-2001)第二时段二级标准,DA021、DA022排气筒废气排放执行广东省《大气污染物排放限值》 (DB44/27-2001)第二时段二级标准。

2.检测结果小于检出限或未检出以"检出限(L)"表示。

表7-4 有组织废气检测结果表(4)

					检测结果(2025.05.19)			检测结果	₹ (2025.05	5.20)	排放限值	
米 样	点位	检测项 目	检测点位及频次		排放浓度 mg/m³	排放风量 m³/h	排放速 率 kg/h	排放浓度 mg/m³	排放风 量 m³/h	排放速率 kg/h	排放浓 度 mg/m³	排放速 率 kg/h
	恶臭废气			第一次	0.34	2.20×10 ³	7.5×10 ⁻⁴	0.62	2.22×10 ³	1.4×10 ⁻³		
废水站	排放口	氨	DA013	第二次	0.27	2.21×10 ³	6.0×10 ⁻⁴	0.49	2.32×10 ³	1.1×10 ⁻³	/	/
	处理前			第三次	0.49	2.19×10 ³	1.1×10 ⁻³	0.40	2.28×10 ³	9.1×10 ⁻⁴		

		第四次	0.25	1.95×10 ³	4.9×10 ⁻⁴	0.76	2.17×10 ³	1.6×10 ⁻³		
		第一次	0.0002 (L)	2.20×10 ³	2.2×10 ⁻⁷	0.0002 (L)	2.22×10 ³	2.2×10 ⁻⁷		
なひ気	DA012	第二次	0.0002 (L)	2.21×10 ³	2.2×10 ⁻⁷	0.0002 (L)	2.32×10 ³	2.3×10 ⁻⁷	,	,
19元7七至(DA013	第三次	0.0002 (L)	2.19×10 ³	2.2×10 ⁻⁷	0.0002 (L)	2.28×10 ³	2.3×10 ⁻⁷	/	/
		第四次	0.0002 (L)	1.95×10 ³	2.0×10 ⁻⁷	0.0002 (L)	2.17×10 ³	2.2×10 ⁻⁷		
		第一次	131	2.20×10 ³	/	131	2.22×10 ³	/		
l	DA013	第二次	131	2.21×10 ³	/	131	2.32×10 ³	/	/	,
知』	DA013	第三次	151	2.19×10 ³	/	151	2.28×10 ³	/	/	/
		第四次	151	1.95×10 ³	/	151	2.17×10^{3}	/		
		第一次	0.25 (L)	2.10×10 ³	2.6×10 ⁻⁴	0.25 (L)	1.96×10 ³	2.5×10 ⁻⁴		
氛	DA013	第二次	0.25 (L)	1.94×10 ³	2.4×10 ⁻⁴	0.25 (L)	1.97×10 ³	2.5×10 ⁻⁴	,	1.0
女(第三次	0.25 (L)	1.95×10 ³	2.4×10 ⁻⁴	0.25 (L)	2.00×10 ³	2.5×10 ⁻⁴	/	1.0
		第四次	0.25 (L)	2.20×10 ³	2.8×10 ⁻⁴	0.25 (L)	1.99×10 ³	2.5×10 ⁻⁴		
		第一次	0.0002 (L)	2.10×10 ³	2.1×10 ⁻⁷	0.0002 (L)	1.96×10 ³	20×10 ⁻⁷		
なん気	DA012	第二次	0.0002 (L)	1.94×10 ³	1.9×10 ⁻⁷	0.0002 (L)	1.97×10 ³	20×10 ⁻⁷	,	0.10
19元7七至(DA013	第三次	0.0002 (L)	1.95×10 ³	2.0×10 ⁻⁷	0.0002 (L)	2.00×10 ³	20×10 ⁻⁷	/	0.10
		第四次	0.0002 (L)	2.20×10 ³	2.2×10 ⁻⁷	0.0002 (L)	1.99×10 ³	1.9×10 ⁻⁷		
		第一次	85	2.10×10 ³	/	72	1.96×10 ³	/		
l	DA012	第二次	72	1.94×10 ³	/	85	1.97×10 ³	/	1000	,
I I	た量 DA013	第三次	85	1.95×10 ³	/	85	2.00×10^{3}	/	1000	/
		第四次	85	2.20×10 ³	/	85	1.99×10 ³	/		
	硫化臭(纲)氨人(纲)原度化次量成量人(双)	臭气浓度 (无量 DA013 纲) DA013 硫化氢 DA013	硫化氢 DA013 第一次 臭气浓度 (无量 纲) DA013 第一次 氨 DA013 第二次 第四次 第二次 第四次 第二次 第四次 第二次 第四次 第二次 第四次 第二次 第三次 第三次 第四次 第二次 第三次 第二次 第二次 第二次 第二次 第二次 第三次 第三次 第三次 第三次	硫化氢 DA013 第一次 0.0002 (L) 第三次 0.0002 (L) 第三次 0.0002 (L) 第三次 0.0002 (L) 第四次 0.0002 (L) 第四次 0.0002 (L) 第一次 131 第三次 151 第四次 151 第四次 0.25 (L) 第三次 0.25 (L) 第三次 0.25 (L) 第四次 0.0002 (L) 第四次 0.0002 (L) 第二次 0.0002 (L) 第三次 0.0002 (L) 第三次 0.0002 (L) 第三次 0.0002 (L) 第二次 0.0002 (L) 第四次 0.0002 (L) 第二次 0.0002 (L) 第四次 0.0002 (L) 第二次 72 第二次 72 第三次 85 第三次 第三次 85	硫化氢 DA013 第一次 0.0002 (L) 2.20×10³ 第二次 0.0002 (L) 2.19×10³ 第三次 0.0002 (L) 2.19×10³ 第四次 0.0002 (L) 1.95×10³ 第四次 0.0002 (L) 1.95×10³ 第四次 131 2.20×10³ 第二次 131 2.21×10³ 第三次 151 2.19×10³ 第三次 151 2.19×10³ 第四次 0.25 (L) 2.10×10³ 第二次 0.25 (L) 1.94×10³ 第三次 0.25 (L) 1.95×10³ 第三次 0.0002 (L) 1.95×10³ 第四次 0.0002 (L) 1.94×10³ 第二次 0.0002 (L) 1.94×10³ 第三次 0.0002 (L) 1.95×10³ 第三次 0.0002 (L) 1.94×10³ 第四次 0.0002 (L) 2.20×10³ 第三次 0.0002 (L) 1.95×10³ 第四次 0.0002 (L) 1.95×10³ 第三次 0.0002 (L) 1.95×10³ 第二次 72 1.94×10³ 第二次 72 1.94×10³ 第三次 72 1.94×10³ 第三次 72 1.94×10³ 第三次 72 1.94×10³ 第三次 72 1.94×10³ 第三次 72 1.94×10³ 第三次 72 1.94×10³	(旅化氢	(旅化氢	歳化氢 第一次 0.0002 (L) 2.20×10³ 2.2×10⁻ 0.0002 (L) 2.22×10³ 第二次 0.0002 (L) 2.21×10³ 2.2×10⁻ 0.0002 (L) 2.32×10³ 第三次 0.0002 (L) 2.19×10³ 2.2×10⁻ 0.0002 (L) 2.28×10³ 第四次 0.0002 (L) 1.95×10³ 2.0×10⁻ 0.0002 (L) 2.17×10³ 第二次 131 2.20×10³ / 131 2.32×10³ 第三次 151 2.19×10³ / 151 2.32×10³ 第四次 151 1.95×10³ / 151 2.17×10³ 第四次 151 1.95×10³ / 151 2.17×10³ 第四次 0.25 (L) 2.10×10³ 2.6×10⁴ 0.25 (L) 1.96×10³ 第二次 0.25 (L) 1.94×10³ 2.4×10⁴ 0.25 (L) 1.97×10³ 第四次 0.25 (L) 1.95×10³ 2.4×10⁴ 0.25 (L) 1.99×10³ 第四次 0.0002 (L) 2.10×10³ 2.1×10⁻ 0.0002 (L) 1.96×10³ 第二次 0.0002 (L) 1.94×10³ 1.9×10⁻ 0.0002 (L) 1.99×10³	歳化氢 第一次 0.0002 (L) 2.20×10³ 2.2×10⁻¹ 0.0002 (L) 2.22×10³ 2.2×10⁻² 第二次 0.0002 (L) 2.21×10³ 2.2×10⁻² 0.0002 (L) 2.32×10³ 2.3×10⁻² 第三次 0.0002 (L) 2.19×10³ 2.2×10⁻² 0.0002 (L) 2.28×10³ 2.3×10⁻² 第四次 0.0002 (L) 1.95×10³ 2.0×10⁻² 0.0002 (L) 2.17×10³ 2.2×10⁻² 第一次 131 2.20×10³ / 131 2.32×10³ / 第二次 151 2.19×10³ / 151 2.28×10³ / 第四次 151 2.19×10³ / 151 2.28×10³ / 第四次 151 1.95×10³ / 151 2.17×10³ / 第四次 151 1.95×10³ / 151 2.17×10³ / 第二次 0.25 (L) 2.10×10³ 2.6×10⁴ 0.25 (L) 1.96×10³ 2.5×10⁴ 第二次 0.25 (L) 1.94×10³ 2.4×10⁴ 0.25 (L) 1.99×10³ 2.5×10⁴ 第二次 0.0002 (L) 2.10×10³ 2.8×10⁴ 0.25 (L) 1.99×10³ 2.0×10⁻² 第二次 0.0002 (L) 1.94×10³ 1.9×10⁻² 0.0002 (L) 1.97×10³ 2.0×10⁻² </td <td>確化名 DA013 第一次 0.0002(L) 2.20×10³ 2.2×10⁷ 0.0002(L) 2.22×10³ 2.2×10⁷ 月 0.0002(L) 2.32×10³ 2.3×10⁷ 月 0.0002(L) 2.32×10³ 2.3×10⁷ 月 0.0002(L) 2.32×10³ 2.3×10⁷ 月 0.0002(L) 2.32×10³ 2.3×10⁷ 月 0.0002(L) 2.17×10³ 2.2×10⁷ 月 0.0002(L) 2.17×10³ 2.2×10⁷ 月 0.0002(L) 2.17×10³ 2.2×10⁷ 月 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	確化名 DA013 第一次 0.0002(L) 2.20×10 ³ 2.2×10 ⁷ 0.0002(L) 2.22×10 ³ 2.2×10 ⁷ 月 0.0002(L) 2.32×10 ³ 2.3×10 ⁷ 月 0.0002(L) 2.17×10 ³ 2.2×10 ⁷ 月 0.0002(L) 2.17×10 ³ 2.2×10 ⁷ 月 0.0002(L) 2.17×10 ³ 2.2×10 ⁷ 月 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

注: 1.DA013排气筒高度20m。

^{2.}检测结果小于检出限或未检出以"检出限(L)"表示。

^{3.}废水站臭气执行天津市地方标准《恶臭污染物排放标准》(DB12/059-2018) 中的表 1 标准(有组织排放口)。

		7-5 废气有组织	检测达标情况表			
	采样点位	检测项目	检测点位	检测次数/次	达标次数/次	达标率%
	酸性废气排放口 1#处理后	硫酸雾	DA015	6	6	100
1栋	酸性废气排放口 2#处理后	氯化氢	DA016	6	6	100
	有机废排放口处理后	非甲烷总烃	DA017	6	6	100
		非甲烷总烃		6	6	100
	有机废气 1#排放口	甲醇	DA018	6	6	100
3 栋		苯系物		6	6	100
3 你		非甲烷总烃		6	6	100
	有机废气 2#排放口	甲醇	DA019	6	6	100
		苯系物		6	6	100
8 栋	有机废气排放口处理后	非甲烷总烃	DA023	6	6	100
		非甲烷总烃		6	6	100
	综合废气排放口处理后	锡及其化合物	DA020	6	6	100
4 栋		颗粒物		6	6	100
	酸性废气排放口 1#处理后	硫酸雾	DA021	6	6	100
	酸性废气排放口 2#处理后	氯化氢	DA022	6	6	100
		氨		8	8	100
废水站	恶臭废气排放口处理后	硫化氢	DA013	8	8	100
		臭气浓度		8	8	100

综上检测结果,有组织排放废气经处理后,各项污染物排放达标率为100%。有机废气可达到广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表1标准,其中甲醇有组织排放执行广东省《大气污染物排放限值》(DB 44 27-2001)第二时段二级标准,其他实验废气可达到广东省《大气污染物排放限值》(DB 44 27-2001)第二时段二级标准,废水站臭气可达到参照的天津市地方标准《恶臭污染物排放标准》(DB12/059-2018)中的表1标准(有组织排放口)。

2.2无组织废气检测结果

表7-6 厂区内无组织废气检测结果表

检测点名 称	检测项目	检测频 次	2025.04.07 检 测结果	2025.04.08 检测结果	标准限 值	计量单位
0444-文		第一次	1.64	1.68	6	mg/m ³
8栋生产 车间门口	非甲烷总烃	第二次	1.71	1.82	6	mg/m ³
十回11日		第三次	1.78	1.82	6	mg/m ³
1 块		第一次	1.67	1.37	6	mg/m ³
1 栋生产 车间门口	非甲烷总烃	第二次	1.70	1.30	6	mg/m ³
		第三次	1.73	1.31	6	mg/m ³

注: 1.厂区内非甲烷总烃在厂房外设监测点。

表7-7 厂区内无组织废气检测达标情况表

采样点位	检测项目	检测次数/次	达标次数/次	达标率%
8 栋生产车间门口	非甲烷总烃	6	6	100
1 栋生产车间门口	非甲烷总烃	6	6	100

根据上表监测结果,厂区内非甲烷总烃达标率为100%,达到广东省地方标准《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表3标准无组织排放限值。

表7-8 厂界无组织废气检测结果表

				检测结果	(mg/m ³)		标准限值
检测日期	检测项	目	无组织排 放上风向 参照点 1#	无组织排 放下风向 监控点 2#	无组织排 放下风向 监控点 3#	无组织排 放下风向 监控点 4#	排放浓度 mg/m³
		第一次	0.17 (L)	0.17 (L)	0.17 (L)	0.17 (L)	
	颗粒物	第二次	0.17 (L)	0.17 (L)	0.17 (L)	0.17 (L)	1.0
		第三次	0.17 (L)	0.17 (L)	0.17 (L)	0.17 (L)	
		第一次	2.3×10 ⁻⁵	3.7×10 ⁻⁵	3.4×10 ⁻⁵	3.5×10 ⁻⁵	
	锡及其化合物	第二次	2.5×10 ⁻⁵	3.3×10 ⁻⁵	4.0×10 ⁻⁵	3.3×10 ⁻⁵	0.24
2025.04.0 7		第三次	1.9×10 ⁻⁵	2.2×10 ⁻⁵	2.4×10 ⁻⁵	2.4×10 ⁻⁵	
,		第一次	0.020	0.028	0.034	0.133	
	硫酸雾	第二次	0.020	0.022	0.027	0.140	1.2
		第三次	0.019	0.035	0.027	0.025	
	氯化氢	第一次	0.02 (L)	0.02 (L)	0.02 (L)	0.02 (L)	0.20
	承(化全)	第二次	0.02 (L)	0.02 (L)	0.02 (L)	0.02 (L)	0.20

^{2.}厂区内非甲烷总烃执行广东省地方标准《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 标准无组织排放限值。

		第三次	0.02 (L)	0.02 (L)	0.02 (L)	0.70	
			0.0015 (L)				
	甲苯	第二次	0.0015 (L)	0.0015 (L)	0.0015 (L)	0.0015 (L)	2.4
			0.0015 (L)				
		第一次	1.34	1.17	1.19	1.14	
	非甲烷总烃	第二次	1.20	1.14	1.15	1.11	4.0
		第三次	1.34	1.34	1.12	1.14	
		第一次	2 (L)	2 (L)	2 (L)	2 (L)	
	甲醇	第二次	2 (L)	2 (L)	2 (L)	2 (L)	12
		第三次	2 (L)	2 (L)	2 (L)	2 (L)	
		第一次	0.17 (L)	0.17 (L)	0.17 (L)	0.17 (L)	
	颗粒物	第二次	0.17 (L)	0.17 (L)	0.17 (L)	0.17 (L)	1.0
		第三次	0.17 (L)	0.17 (L)	0.17 (L)	0.17 (L)	
		第一次	1.5×10 ⁻⁵	6.4×10 ⁻⁵	5.2×10 ⁻⁵	5.7×10 ⁻⁵	
	锡及其化合物	第二次	3.4×10 ⁻⁵	6.1×10 ⁻⁵	3.4×10 ⁻⁵	3.4×10 ⁻⁵	0.24
		第三次	2.9×10 ⁻⁵	4.2×10 ⁻⁵	3.2×10 ⁻⁵	3.3×10 ⁻⁵	
		第一次	0.016	0.022	0.030	0.157	
	硫酸雾	第二次	0.016	0.019	0.024	0.099	1.2
		第三次	0.017	0.017	0.020	0.017	
2025.04.0		第一次	0.02 (L)	0.02 (L)	0.02 (L)	0.02 (L)	0.20
2025.04.0	氯化氢	第二次	0.02 (L)	0.02 (L)	0.02 (L)	0.087	0.20
		第三次	0.02 (L)	0.094	0.02 (L)	0.090	
		第一次	0.0111	0.0319	0.0272	0.0286	2.4
	甲苯	第二次	0.0015 (L)	0.0015 (L)	0.0015 (L)	0.0015 (L)	2.4
		第三次	0.0015 (L)	0.0015 (L)	0.0015 (L)	0.0085	
		第一次	1.51	1.86	1.76	1.80	
	非甲烷总烃	第二次	1.76	1.86	1.89	1.77	4.0
		第三次	1.90	1.74	1.84	1.76	
		第一次	2 (L)	2 (L)	2 (L)	2 (L)	
	甲醇	第二次	2 (L)	2 (L)	2 (L)	2 (L)	12
		第三次	2 (L)	2 (L)	2 (L)	2 (L)	
		第一次	0.107	0.174	0.055	0.121	
2025.05.2	氨	第二次	0.072	0.162	0.154	0.085	0.20
2025.05.2 7	女	第三次	0.029	0.142	0.119	0.068	0.20
,		第四次	0.042	0.163	0.082	0.147	
	硫化氢	第一次	0.0002 (L)	0.0002 (L)	0.0002 (L)	0.0002 (L)	0.02

		给一	0.0002 (I)	0.0002 (I)	0.0002 (I.)	0.0002 (I)	
			0.0002 (L)				
		第三次	0.0002 (L)	0.0002 (L)	0.0002 (L)	0.0002 (L)	
		第四次	0.0002 (L)	0.0 <u>0</u> 02 (L)	0.0 <u>0</u> 02 (L)	0.0002 (L)	
		第一次	<10	<10	<10	<10	
	臭气浓度	第二次	<10	<10	<10	<10	20
	(无量纲)	第三次	<10	<10	<10	<10	20
		第四次	<10	<10	<10	<10	
		第一次	0.114	0.072	0.173	0.079	
	复	第二次	0073	0.112	0.107	0.144	0.20
	氨	第三次	0.086	0.163	0.148	0.106	
		第四次	0.129	0.063	0.151	0.089	
		第一次	0.0002 (L)	0.0002 (L)	0.0002 (L)	0.0002 (L)	
2025.05.2	弦化气	第二次	0.0002 (L)	0.0002 (L)	0.0002 (L)	0.0002 (L)	0.02
8	硫化氢	第三次	0.0002 (L)	0.0002 (L)	0.0002 (L)	0.0002 (L)	
		第四次	0.0002 (L)	0.0002 (L)	0.0002 (L)	0.0002 (L)	
		第一次	<10	<10	<10	<10	
	臭气浓度	第二次	<10	<10	<10	<10	20
	(无量纲)	第三次	<10	<10	<10	<10	
		第四次	<10	<10	<10	<10	

注: 1.检测结果小于检出限或未检出以"检出限(L)"表示。

2.甲醇、甲苯、硫酸雾、氯化氢、颗粒物、锡及其化合物厂界无组织执行广东省《大气污染物排放限值》(DB 44 27-2001)第二时段无组织监控浓度限值,废水站臭气执行参照的天津市地方标准《恶臭污染物排放标准》(DB12/059-2018)中表 2 标准(无组织排放周界限值)。

表7-9 厂界无组织废气检测达标情况表

采样点位	检测项目	检测次数/次	达标次数/次	达标率%
	颗粒物	6	6	100
	锡及其化合物	6	6	100
	硫酸雾	6	6	100
	氯化氢	6	6	100
无组织排放下	甲苯	6	6	100
风向监控点 2#	非甲烷总烃	6	6	100
	甲醇	6	6	100
	氨	8	8	100
	硫化氢	8	8	100
	臭气浓度	8	8	100
无组织排放下	颗粒物	6	6	100
风向监控点 3#	锡及其化合物	6	6	100

	硫酸雾	6	6	100
	氯化氢	6	6	100
	甲苯	6	6	100
	非甲烷总烃	6	6	100
	甲醇	6	6	100
	氨	8	8	100
	硫化氢	8	8	100
	臭气浓度	8	8	100
	颗粒物	6	6	100
	锡及其化合物	6	6	100
	硫酸雾	6	6	100
	氯化氢	6	6	100
无组织排放下	甲苯	6	6	100
风向监控点 4#	非甲烷总烃	6	6	100
	甲醇	6	6	100
	氨	8	8	100
	硫化氢	8	8	100
	臭气浓度	8	8	100

根据监测结果,各项废气厂界无组织排放达标率为100%,甲醇、甲苯、硫酸雾、氯化氢、颗粒物、锡及其化合物厂界无组织达到广东省《大气污染物排放限值》(DB 44 27-2001)第二时段无组织监控浓度限值,废水站臭气达到天津市地方标准《恶臭污染物排放标准》(DB12/059-2018)中表2标准(无组织排放周界限值)。

3、噪声

厂界噪声检测结果

表7-10 噪声检测结果表

测点编号			木		标准限值			
	采样点位	主要声源	2025	2025.04.07		2025.04.08		(A)
			昼间	夜间	昼间	夜间	昼间	夜间
5#	厂界东面厂界外 1m 处		59.1	49.4	56.7	49.1		
6#	厂界南面厂界外 1m 处	生产噪声	57.7	48.5	57.4	48.9	65	55
7#	厂界西面厂界外 1m 处	土厂噪户	62.8	49.4	58.0	50.0	03	33
8#	厂界北面厂界外 1m 处		57.9	48.8	58.2	49.3		

1. 气象条件:

- (1) 2025.04.07 天气状况: 晴, 风速: 1.4m/s, 风向: 北;
- (2) 2025.04.08 天气状况: 晴, 风速: 1.4m/s, 风向: 北。
- 2. 噪声执行《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类限值。

根据监测结果,项目厂界噪声标准为《工业企业厂界环境噪声排放标准》(GB 12348-2008)3类区限值。

3、其他

3.1 废水治理设施调试运行效果

根据前述监测结果,项目废水设施处理效果分析见下表。

检测点位 污染因子 去除率(%) DW001 COD_{Cr} 36.3 DW001 69.7 BOD_5 DW001 SS 97.0 DW001 氨氮 50.0 DW001 总氮 58.3 DW001 总磷 97.5 DW001 石油类 75.0

表7-11 废水设施处理效果表

根据上表,项目 COD_{Cr} 、 BOD_5 、SS、氨氮、总氮、总磷、石油类去除率分别约为 36.3%、69.7%、97.0%、50.0%、58.3%、97.5%、75.0%,项目 SS、总氮、总磷去除率 达到环评设计值(SS 90.0%、总氮 55.6%、总磷 83.3%);石油类环评未分析去除率; COD_{Cr} 、 BOD_5 、氨氮去除率较环评设计值(COD_{Cr} 80.0%、 BOD_5 88.6%、氨氮 75.0%)偏低,主要原因是进水浓度较低。

3.2 废气环保设施调试运行效果

根据验收检测报告结果显示,项目废气处理效率较低,主要原因为污染物进口浓度 偏低,建议后续严格按照《深圳市工业有机废气治理用活性炭更换技术指引(试行)》 对废气治理设施中的活性炭进行更换,提高废气治理设施去除率。

3.3 总量控制

根据环评文件,项目总量控制指标为 VOCs,有机废气控制限值为 2083.3kg/a,本次有机废气排放口 DA017、DA018、DA019、DA020、DA023 平均排放速率分别为 0.0056kg/h、0.051kg/h、0.074kg/h、0.0044kg/h、0.038kg/h,合计排放速率为 0.173kg/h,年运行 230d,每天运行 8h,则有机废气有组织排放量约 318.3kg/a,未超出设计控制值;本次验收监测可达到无组织排放限值浓度要求,难以定量计算无组织实际排放总量,为此不计算实际排放总量。

表八 其他情况

1、环境影响评价与批复中环保措施及设施的落实情况

公司已按环评要求配套建设了废水、废气、噪声、固废污染治理的环保设施,各项环保措施与主体工程同时设计、同时施工、同时投入运营,目前运行稳定,污染物经处理后排放可达到环评文件要求。

2、环保设施实际建成及运行情况

本项目升级改造废水处理工程 1 套(原已设废气排放口),增设废气处理设施 21 套,已与主体工程同时设计,并纳入了施工合同,与主体工程同时投入建设。项目建设过程严格按照环境影响报告表中提出的环境保护对策措施的要求进行。

3、突发性环境污染事故的应急制度,以及环境风险防范措施情况

本次验收风险单元主要是危险化学品仓库、危废暂存点。

针对目前本项目的具体情况提出以下环境风险管理对策:

- (1)加强对员工的生产规范操作培训,生产过程中液态物料的量取、倾倒等严格按要求操作,严禁造成泄漏。化学品物料存放在化学品专用柜里,配专人看管,定期进行检查。
 - (2) 泄漏时应该隔离泄漏污染区,限制出入。
- (3) 危险废物设置于专门储存区,并对地面进行硬化和进行防渗透防腐蚀处理。 危险废物妥善收集后定期委托有资质单位处理。
- (4)制定科学安全的生产操作规程,包括定期检查工作,运行过程中的操作规范,运行中的巡查工作。
- (5)发生火灾、爆炸事故时,在事故发生位置四周用装满沙土的袋子围成围堰 拦截消防废液,用吸附棉吸附废液,并在厂内采取导流方式将消防废液、泡沫等统一 收集,集中处理,消除安全隐患后交由有资质单位处理。事故发生后,相关部门要制 定污染监测计划,对可能污染进行监测,根据现场监测结果,直至无异常方可停止监 测工作。

建设项目已开展环境风险应急预案的编制,并进行备案申报。

4、固体废物的产生、利用及处置情况

生活垃圾:项目生活垃圾类固废分类收集在垃圾桶内,定期由环卫部门清运处理。

一般工业固体废物:项目一般固体废物分类收集后交由资源回收单位回收利用。

危险废物:项目已与深圳市环保科技集团股份有限公司等签订工业废物处理协议,将危险废物分类收集后,交由其拉运处理。

5、排污许可执行情况

建设单位已按《固定污染源排污许可分类管理名录》(2019版)要求于2024年07 月29日申报并取得了排污许可证(证书编号: 12440300MB2D1255X8001W),现场 生产严格按证排污,并达到了相关环保管理要求。

6、环境保护档案管理情况

建设单位设有环境保护档案管理部门,并配置了相应的档案管理人员。机构建立有静态、动态环保档案,并分类保管。项目的静态档案主要包括环评文件及审查批复、污染治理设施设计资料等;动态档案主要包括污染治理设施运行台账、监测报告和水费单复印件等,本项目的环保资料齐全。

7、现有环保管理制度及人员责任分工

项目由建设单位自行筹建,项目的运营管理工作由建设单位负责,实验研发人员 80人,未单独设置环境管理机构,由机构负责人统筹制下设兼职环境管理员3人,负 责日常管理,包括以下几点环境管理措施:

- (1)负责废水处理设施、废气处理设施、危险危废贮存场所的生产运行、日常环保和安全管理工作:
 - (2) 制定公司的环境保护责任制,明确各岗位环保职责;
 - (3) 运营班组设专人专职负责设备设施的运行、管理:
- (4)编制各设施操作规程,确保职工正确使用、保养环保设备,并在事故发生时能及时发现并作出正确的应急处理;
- (5)制定环境保护奖惩制度。表彰鼓励环保意识强并对环保工作作出贡献的员工, 惩罚严重损坏环保设施、操作严重失误、严重浪费的员工,以利益机制教育指导员工。

8、环境保护监测机构、人员和仪器设备的配置情况

项目定期委托监测机构进行监测,建设单位自身不设有监测仪器及监测人员。

9、厂区环境绿化情况

项目使用已建成建筑,厂区绿化主要为厂房周围设少量绿化带。

10、存在的问题

废水、废气治理处理设施排放口等规范化标识还不够完善,相关环境管理制度有

待进一步加强。
11、其他
项目建设单位应特别注意加强管理,按照本项目环评文件的要求,做好废水分类
收集,定期维护废水、废气治理设施以便其稳定运行,各项治理设施产生的危险废物
均需妥善处理。

1、验收结论:

- (1) 深圳先进电子材料国际创新研究院成立于 2019 年 6 月 18 日,统一社会信用代码为 12440300MB2D1255X8,主要围绕高密度集成电路关键材料的基础关键问题与应用研究。建设单位租赁深圳市宝安区广深高速与福洲大道交汇处的龙王庙工业区中第 1~8 栋厂房、A 栋办公楼、B 栋和 C 栋宿舍,该项目分两期进行建设,其中一期项目包括 2 栋、5 栋、6 栋、7 栋、A 栋和 B 栋,二期工程包括 1 栋、3 栋、4 栋、8 栋四栋厂房和 C 栋 1 栋宿舍。本次验收仅针对二期工程。
- 二期工程于 2024 年 5 月 31 日取得深圳市生态环境局宝安管理局《关于深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响报告表的批复》(深环宝批〔2024〕000009 号)。

项目取得环境影响报告表的批复后,随即开工建设,于 2024 年 07 月 29 日取得深圳市生态环境局宝安管理局颁发的《排污许可证》(证书编号: 12440300MB2D1255X8001W),随后于 2025 年 03 月开始调试。

本次环保验收主要针对项目废水治理设施、废气治理设施、厂界及厂房外无组织废气、厂界环境噪声、固体废弃物处置情况进行验收。

- (2) 本项目监测期间正常运营,工况稳定,废水、废气治理设施正常运行。
- (3)废水:项目废水经升级改造后的废水处理设施处理达标后、生活污水经工业区化粪池预处理后,均排入市政污水管网,纯水制备尾水直接排入市政污水管网,最终进入福永水质净化厂做后续处理。
- (4)废气:项目废气经 21 套废气治理设施处理达标后排放;升级改造后的废水站废气经原一期工程已设废气治理设施处理达标后排放。

经监测,项目有机废气有组织排放达到广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 1 标准要求,厂区内 NMHC 排放达到广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表 3 限值要求,甲醇有组织排放达到广东省《大气污染物排放限值》(DB 44 27-2001)第二时段二级标准,甲醇、甲苯、NMHC 厂界无组织排放达到广东省《大气污染物排放限值》(DB 44 27-2001)第二时段无组织监控浓度限值。

硫酸雾、颗粒物、锡及其化合物排放达到广东省《大气污染物排放限值》(DB 44

27-2001) 第二时段二级标准及无组织排放监控浓度限值。

升级改造后的废水站臭气达到参照的天津市地方标准《恶臭污染物排放标准》 (DB12/059-2018) 中的表 1 标准(有组织排放口)和表 2 标准(无组织排放周界限值)。

- (5)噪声:项目已设置隔声门、隔声窗等一系列隔声、降噪措施,再经距离衰减,已最大限度减少对周围环境的影响。经监测,项目厂界昼间和夜间噪声监测值均达《工业企业厂界环境噪声排放标准》(GB12348-2008)3类标准要求。
- (6)固体废弃物:项目生活垃圾定期交环卫部门清运处理。一般工业固废收集后交专业公司回收利用。危险废物须由专门的容器储存,暂存在危险废物暂存间,分类收集,定期交给深圳市环保科技集团股份有限公司拉运处理,已签订拉运协议。

项目验收监测期间由深圳市华保科技有限公司编制了检测报告(报告编号: HB253V0189010-1940),根据检测结果,项目废水达标排放,排气筒废气达标排放,厂界及厂区内无组织废气达标排放,厂界噪声达标。根据现场调查结果,该项目基本符合竣工环境保护验收条件,可以组织进行环保竣工验收。

2、 建议:

按照《危险废物贮存污染控制标准》的相关规定制度,加强危险废物的处置和管理;按照本项目环评文件的要求,做好废水分类收集,加强废水、废气等环保设施的维护与管理,确保各类污染物达标排放。

建设项目竣工环境保护"三同时"验收登记表

填表单位(盖章):深圳先进电子材料国际创新研究院

填表人(签字):

项目经办人(签字):

			100	The state of the s								-	
	项目名称	深圳先进电	子材料国际创新研	TÝZIĢ			项目代码		7			高速与福洲大道 3 栋、4 栋、8 栋	
	行业类别 (分类管理名录)	eres	究和试验发展,97 污染防治设施的	7 专业实验室、研	发 (试验) 基	地-有废水、废气排	建设性质		□新建 図改扩建 □技术改造				113.833474° 22.674461°
建	设计生产能力	绝缘胶膜 38400m/a、纳米银 96kg/a、纳米铜 24kg/a、硅微粉 96kg/a、晶圆级扇 出型封装 4000 片/年、FC 基板级封装 2000 片/年、电子封装用胶粘剂(底部填 充胶)等常规电子专用材料 24kg/a							与环评设计基本一致	环评单位	深圳中	中科环保产业发展	展有限公司
建设项目	环评文件审批机关	深圳市生态	深圳市生态环境局宝安管理局					深环宝批	[2024]000009 号	环评文件类型	环评	报告表 (审批类)	
自	开工日期	2024年06月	A			· · - · - · - · - · - · - · - · - · -	竣工日期		2025年03月	排污许可证申领的	间 2024	年07月29日	
	环保设施设计单位	深圳中科环	深圳中科环保产业发展有限公司				环保设施施工	单位 深圳中科	环保产业发展有限公司	本工程排污许可证	[編号 12440)300MB2D1255X	78001W
	验收单位	深圳中科环保产业发展有限		词			环保设施监测单			验收监测时工况	100%	100%	
	投资总概算 (万元) 8000		1			环保投资总概算 (万元)		300 所占比例 (%)		3.75	3.75		
	实际总投资	8000	8000		实际环保投资 (万元)		300	所占比例(%)	3.75	3.75			
	废水治理 (万元)	120	废气治理(万元)	100	噪声治理	(万元) 10	固体废物治理	(万元)	60	绿化及生态(万元	6) 0	其他(万元)	10
	新增度水处理设施能力				新增废气处理证	受施能力	29.5 万 m³/h	年平均工作时	1840	1840			
	运营单位	深圳先进电子材料国际创新研究院 运营单位社会		运营单位社会统-	-信用代码(或组织机构代码)		12440300MB2D1255X8	440300MB2D1255X8 验收时间		2025年06月30日			
	污染物	原有排 放量(1)	本期工程实际 排放浓度(2)	本期工程允许排放浓度(3)	本期工程 产生量(4)	本期工程自身削减量(5)	本期工程实际排放量(6)	本期工程核定排放总量(7)	本期工程"以新带老"削减量(8)	全厂实际排放总 量(9)	全厂核定排 放总量(10)	区域平衡替代削减量(11)	排放增减量
污染	废水	589.65	/	/	108.52	0	108.52	108.52	0	698.17	698.17	/	+108.52
物排放达	Al-Marian	5,578	1	/	/	/	1	1.251	0	1	6,829	7	1
板込	氨氮	2.779	7	/	/ =	7	/	0.151	0	/	2.930	1	1 /
总量	石油类	/	1	1	/	7	1	/	T	1	1	7	7
控制	废气	1	1	1	54280	/	54280	54280	0	1	1	/	/
业建	二氧化硫	7	1	1	/	A	/	/	1	· ·	£	1	7
设项目详	挥发性有机物	0.0698	1	1	/	7	/	2.8033	0	1	2.8731	/	+2.8033
填)	工业粉尘	7	1	1	1	1	/	/	7	/	ı.E	7	1
	氮氧化物	1	7	1	/	1	/	1	1	/	1	1	/
	工业固体废物	7	1	1	/	Y	0	1	T	0	1	1	7

注: 1、排放增减量: (+) 表示增加, (-) 表示减少。2、(12)=(6)-(8)-(11), (9) = (4)-(5)-(8)-(11)+ (1)。3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放量——一万吨/年; 水污染物排放量——一克中/年。

深圳先进电子材料国际创新研究院(二期工程)建设项目竣工环境保护"三同时"验收结果的公告

根据《建设项目竣工环境保护验收暂行办法》及相关法律法规要求,我单位委托深圳中科环保产业发展有限公司编制了《深圳先进电子材料国际创新研究院(二期工程)建设项目竣工环境保护验收监测表》,根据验收文件结论,本项目符合验收条件。2025年06月30日,深圳先进电子材料国际创新研究院组织验收报告编制单位深圳中科环保产业发展有限公司、验收监测单位深圳市华保科技有限公司等对本项目进行了验收,验收结果为本项目通过了环保设施竣工验收。2025年06月30日,本项目已通过深圳中科环保产业发展有限公司网站途径向社会公开了验收报告。

我单位承诺积极配合相关部门监管、自觉接受社会监督,并对以上公告信息的真实性、有效性负责,如存在弄虚作假行为,我单位将承担由此引起的相关责任。

建设单位联系人:
联系地址: 深圳市宝安区广深高速与福洲大道交汇处的龙王庙工业区
联系电话:
公告单位:深圳先进电子材料国际创新研究院(盖章)
法定代表人:
2025 年 06 月 30 日

深圳先进电子材料国际创新研究院(二期工程)建设项目 竣工环境保护验收意见

2025年06月30日,深圳先进电子材料国际创新研究院根据《深圳先进电子材料国际创新研究院(二期工程)建设项目竣工环境保护验收监测报告表》,并对照《建设项目竣工环境保护验收暂行办法》,严格依照国家有关法律法规、建设项目竣工环境保护验收技术规范/指南、本项目环境影响评价报告表和审批部门审批决定等要求对本项目进行验收,提出意见如下:

一、工程建设基本情况

1、建设地点、规模、主要建设内容

深圳先进电子材料国际创新研究院成立于 2019 年 6 月 18 日,统一社会信用代码为 12440300MB2D1255X8,主要围绕高密度集成电路关键材料的基础关键问题与应用研究。建设单位租赁深圳市宝安区广深高速与福洲大道交汇处的龙王庙工业区中第 1~8 栋厂房、A 栋办公楼、B 栋和 C 栋宿舍,总占地面积 22000m²,总建筑面积 43465.38m²,该项目分两期进行建设,其中一期项目包括 2 栋、5 栋、6 栋、7 栋、A 栋和 B 栋,二期工程包括 1 栋、3 栋、4 栋、8 栋四栋厂房和 C 栋 1 栋宿舍。本次验收仅针对二期工程。

二期工程于2024年5月31日取得深圳市生态环境局宝安管理局《关于深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响报告表的批复》(深环宝批[2024]000009号),批注建设内容为:年研发绝缘胶膜38400m、纳米银96kg、纳米铜24kg、硅微粉96kg、晶圆级扇出型封装4000片、FC基板级封装2000片、电子封装用胶粘剂等常规电子专用材料24kg。

2、建设过程及环保审批情况

项目 2024 年 05 月 31 日取得《关于深圳先进电子材料国际创新研究院(二期工程) 建设项目环境影响评价报告表的批复》(深环宝批[2024]000009 号),项目已取得《排污许可证》(证书编号: 12440300MB2D1255X8001W)。项目成立至今无环境投诉、违法或处罚记录。

3、投资情况

项目总投资约8000万。其中环保投资约300万,占总投资3.75%。

4、验收范围

本次验收针对废气排放、废水排放、固体废物和厂界的噪声。

二、工程变动情况

项目从事研发绝缘胶膜、纳米银、纳米铜、硅微粉、晶圆级扇出型封装、FC 基板级封装、电子封装用胶粘剂等常规电子专用材料的研发,研发产量分别为: 38400m/a、96kg/a、24kg/a、96kg/a、4000 片/年、2000 片/年、24kg/年,实际运营与环境影响报告表的内容基本一致。

项目所属行业的环评管理暂无行业建设项目重大变动清单可以对比分析,故项目的 变动是否属于重大变动参照《污染影响类建设项目重大变动清单(试行)》进行对比分 析说明,见表 1。

表 1 项目变动与污染影响类建设项目重大变动清单对比一览表

项目	环力	环评函[2020]688 号中"污染物影响建设项目重大 变动清单(试行)"内容	建成情况	是否属 于重大 变动
1	性质	1.建设项目开发、使用功能发生变化的。	项目在评价地址建设,开发、 使用功能无变化。	否
		2.生产、处置或储存能力增大 30%及以上的。	建设内容及规模与环评设计 阶基本一致。	否
		3.生产、处置或储存能力增大,导致废水第一类 污染物排放量增加的。	项目生产、处置或储存能力 基本无变化,未涉及废水第 一类污染物排放。	否
2	规模	4.位于环境质量不达标区的建设项目生产、处置或储存能力增大,导致相应污染物排放量增加的(细颗粒物不达标区,相应污染物为二氧化硫、氮氧化物、可吸入颗粒物、挥发性有机物;臭氧不达标区,相应污染物为氮氧化物、挥发性有机物;其他大气、水污染物因子不达标区,相应污染物为超标污染因子);位于达标区的建设项目生产、处置或储存能力增大,导致污染物排放量增加 10%及以上的。	项目位于达标区,不设生产, 仅研发,项目研发、处置或 储存能力基本无变化,不增 加污染物排放量。	否
3	地点	5.重新选址;在原厂址附近调整(包括总平面布置变化)导致环境防护距离范围变化且新增敏感点的。	项目在环评报批地址建设, 未导致环境防护距离范围变 化,未新增敏感点。	否

项目	环丈	苏环评函[2020]688 号中"污染物影响建设项目重大 变动清单(试行)"内容	建成情况	是否属 于重大 变动
4	生产工艺	6.新增产品品种或生产工艺(含主要生产装置、设备及配套设施)、主要原辅材料、燃料变化,导致以下情形之一: (1)新增排放污染物种类的(毒性、挥发性降低的除外); (2)位于环境质量不达标区的建设项目相应污染物排放量增加的; (3)废水第一类污染物排放量增加的; (4)其他污染物排放量增加10%及以上的。	产品、工艺、原辅料及燃料均基本无变化。	否
		7.物料运输、装卸、贮存方式变化,导致大气污染物无组织排放量增加10%及以上的。	物料运输、装卸、贮存方式 无变化。	否
		8.废气、废水污染防治措施变化,导致第6条中所列情形之一(废气无组织排放改为有组织排放、污染防治措施强化或改进的除外)或大气污染物无组织排放量增加10%及以上的。	废水、废气污染防治措施无 变化,不增加污染物排放总 量	否
		9.新增废水直接排放口;废水由间接排放改为直接排放;废水直接排放口位置变化,导致不利环境影响加重的。	工业废水、生活污水经处理 达标后分别排入市政污水管 网,各设1个排放口,属间 接排放,排放口位置无变化。	否
5	环境保护	10.新增废气主要排放口(废气无组织排放改为 有组织排放的除外);主要排放口排气简高度降 低 10%及以上的。	不增加废气主要排放口,废 气排放口高度不降低	否
	措施	11.噪声、土壤或地下水污染防治措施变化,导 致不利环境影响加重的。	已采取场区地面硬化等防治 措施,不导致不利环境影响 加重。	否
		12.固体废物利用处置方式由委托外单位利用处置改为自行利用处置的(自行利用处置设施单独开展环境影响评价的除外);固体废物自行处置方式变化,导致不利环境影响加重的。	固体废物委托处理、处置方 式不变,不导致不利环境影 响加重。	否
		13.事故废水暂存能力或拦截设施变化,导致环境风险防范能力弱化或降低的。	事故废水暂存能力或拦截设 施不变,不会因此导致环境 风险防范能力弱化或降低。	否

综上所述, 项目的变更不属于重大变动。

三、环境保护设施建设情况

1、废水

项目废水经升级改造后的废水处理设施处理达标后、生活污水经工业区化粪池预处理后,均排入市政污水管网,纯水制备尾水直接排入市政污水管网,最终进入福永水质净化厂做后续处理。

2、废气

项目废气经21套废气治理设施处理达标后排放;升级改造后的废水站废气经原一期 工程已设废气治理设施处理达标后排放。

3、噪声

项目主要噪声源为设备运行产生的噪声,项目周边50m不存在声环境敏感保护目标。 本项目主要降噪措施为:在设备选择上优先考虑选择低噪设备,场地合理布局,采 用双层玻璃窗进行隔音降噪,动力设备置于独立房间进行降噪隔声处理等。

4、固体废物

生活垃圾:项目生活垃圾类固废分类收集在垃圾桶内,定期由环卫部门清运处理。

一般工业固体废物:项目一般固体废物分类收集后交由资源回收单位回收利用。

危险废物:项目已与深圳市环保科技集团股份有限公司等签订工业废物处理协议, 将危险废物分类收集后,交由其拉运处理。

5、环境风险防范设施

本次验收风险单元主要是危险化学品仓库、危废暂存点。

针对目前本项目的具体情况提出以下环境风险管理对策:

- (1) 加强对员工的生产规范操作培训,生产过程中液态物料的量取、倾倒等严格按要求操作,严禁造成泄漏。化学品物料存放在化学品专用柜里,配专人看管,定期进行检查。
 - (2) 泄漏时应该隔离泄漏污染区,限制出入。
- (3) 危险废物设置于专门储存区,并对地面进行硬化和进行防渗透防腐蚀处理。危险废物妥善收集后定期委托有资质单位处理。
- (4)制定科学安全的生产操作规程,包括定期检查工作,运行过程中的操作规范,运行中的巡查工作。
- (5) 发生火灾、爆炸事故时,在事故发生位置四周用装满沙土的袋子围成围堰拦截消防废液,用吸附棉吸附废液,并在厂内采取导流方式将消防废液、泡沫等统一收集,集中处理,消除安全隐患后交由有资质单位处理。事故发生后,相关部门要制定污染监测计划,对可能污染进行监测,根据现场监测结果,直至无异常方可停止监测工作。

四、环境保护设施调试效果

- 1、环保设施处理效率
- (1) 废水治理设施

项目 COD_{Cr}、BOD₅、SS、氨氮、总氮、总磷、石油类去除率分别约为 36.3%、69.7%、97.0%、50.0%、58.3%、97.5%、75.0%, 项目 SS、总氮、总磷去除率达到环评设计值(SS

90.0%、总氮 55.6%、总磷 83.3%); 石油类环评未分析去除率; COD_{Cr}、BOD₅、氨氮 去除率较环评设计值(COD_{Cr} 80.0%、BOD₅ 88.6%、氨氮 75.0%)偏低,主要原因是进 水浓度较低。

(2) 废气治理设施

项目废气处理效率较低,主要原因为污染物进口浓度偏低,建议后续严格按照《深圳市工业有机废气治理用活性炭更换技术指引(试行)》对废气治理设施中的活性炭进行更换,提高废气治理设施去除率。

(3) 噪声治理设施

厂界噪声监测结果表明:厂界噪声排放均达到《工业企业厂界环境噪声排放标准》 (GB12348-2008)3类标准限值,项目噪声治理设施降噪效果较好。

2、污染物排放情况

(1) 废水

废水总产生量为 13.31t/d(3061.3t/a),与一期工程实验综合废水一并进入自建废水处理设施处理,设施设计处理能力 45t/d,可满足本项目排放要求,废水经处理后排放,达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准与福永水质净化厂进水标准的较严值。

生活污水排放经工业区化粪池预处理可达到广东省《水污染物排放限值》 (DB4426-2001)第二时段三级标准,排入市政污水管网;纯水制备尾水直接排入市政污水管网。

(2) 废气

项目有机废气有组织排放达到广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表1标准,厂区内NMHC排放达到广东省《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022)表3限值要求,甲醇有组织排放达到广东省《大气污染物排放限值》(DB 44 27-2001)第二时段二级标准,甲醇、甲苯、NMHC厂界无组织排放达到广东省《大气污染物排放限值》(DB 44 27-2001)第二时段无组织监控浓度限值。

硫酸雾、颗粒物、锡及其化合物排放达到广东省《大气污染物排放限值》(DB 44 27-2001)第二时段二级标准及无组织排放监控浓度限值。

升级改造后的废水站臭气达到参照的天津市地方标准《恶臭污染物排放标准》 (DB12/059-2018) 中的表1标准(有组织排放口)和表2标准(无组织排放周界限值)。

(3) 厂界噪声

项目厂界昼间和夜间噪声监测值均达《工业企业厂界环境噪声排放标准》 (GB12348-2008) 3 类标准要求。

(4) 固体废物

生活垃圾定期交环卫部门清运处理。一般工业固废收集后交专业公司回收利用。危险废物须由专门的容器储存,暂存在危险废物暂存间,分类收集,定期交给深圳市环保 科技集团股份有限公司拉运处理,已签订拉运协议。

(5) 污染物排放总量

项目废污水达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准与福永水质净化厂设计进水水质的较严者后,纳入市政污水管网,进入福永水质净化厂期做后续处理,水污染物排放总量由区域性调控解决,不分配总量控制指标。本项目不排放氮氧化物,有机废气经处理后排放,根据核算,有机废气有组织排放量约318.3kg/a,未超出设计控制值(有组织排放 1241.3kg/a);本次验收监测可达到无组织排放限值浓度要求,难以定量计算无组织实际排放总量,为此不计算实际排放总量。

五、工程建设对环境的影响

项目生活污水经化粪池处理后由市政污水管网,工业废水经升级改造后的废水处理设施处理达标后排入市政污水管网,纯水制备尾水直接排入政污水管网,均进入福永水质净化厂做后续处理。各类废气经处理达标后排放。噪声经隔震、降噪处理后排放。经监测,项目废水、废气、噪声排放均可达到相关标准限值要求。一般固废按相关要求设置了一般工业固废贮存场所、定期外售可回收利用公司,危险废物按照相关要求设置了危险废物暂存处并委托深圳市环保科技集团股份有限公司处置。故项目运行对周边环境的影响较小。

六、验收结论

本项目落实各项污染物防治措施,根据深圳市华保科技有限公司提供的监测报告, 各类污染物排放符合相关排放限值。建议该项目通过竣工环境保护验收。

七、后续要求

按照《危险废物贮存污染控制标准》的相关规定制度,加强危险废物的处置和管理;按照本项目环评文件的要求,做好废水分类收集,加强废水、废气等环保设施的维护与管理,确保各类污染物达标排放。

八、**验收人员信息** 详见"验收组成员签到表"。

深圳先进电子材料国际创新研究院 2025年06月80 首

深圳先进电子材料国际创新研究院竣工环境保护

验收组成员签到表

科									
48									
联系方式									
职务/职称									
番									
特位									
胜名									
※ 紹	建设单位	建设单位	监测单位	环评单位	运维单位	施工单位	验收单位		
	第 条				â	组员	.!		

建设项目竣工环境保护验收其他需要说明的事项

H H H H

项目名称:深圳先进电子材料国际创新研究院(二期工程)建设项目

验收单位:深圳先进电子材料国际创新研究院

2025年06月30日

根据《建设项目竣工环境保护验收暂行办法》的公告(国环规环评[2017]4号)的相关要求及规定,验收报告由验收监测(调查)报告、验收意见和其他需要说明的事项三部分组成。"其他需要说明的事项"中应如实记载的内容包括环境保护设施设计、施工和验收过程简况,环境影响报告书(表)及其审批部门审批决定中提出的除环境保护设施外的其他环境保护措施的实施情况及整改工作情况等,现将本项目需要说明的具体内容和要求梳理如下:

1、环境保护设施设计、施工和验收过程简况

1.1 设计简况

项目由建设单位--深圳先进电子材料国际创新研究院委托深圳中科环保产业发展有限公司对废水治理设施升级改造、废气治理设施排放口并口编制了初步设计方案,委托深圳中科环保产业发展有限公司编制《深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响评价报告表》(批复文号:深环宝批[2024]000009号),对项目运营期应采取的环境保护措施进行详细的描述。

1.2 施工简况

本项目升级改造废水处理工程 1 套(原已设废气排放口),增设废气处理设施 21 套,已与主体工程同时设计,并纳入了施工合同,与主体工程同时投入建设。项目建设过程严格按照环境影响报告表中提出的环境保护对策措施的要求进行。

1.3 验收过程简况

本次验收为企业自主验收。项目于 2025 年 3 月开始调试运行,经过一段时间的调试,逐步达到设计规模,随后在建设项目所涉及的环保设施建设、运行状况、环境保护管理等相关内容完善的基础上,验收报告编制单位制定了验收监测方案,于当月委托深圳市华保科技有限公司对建设项目进行竣工环境保护验收监测,并编制了《深圳先进电子材料国际创新研究院(二期工程)建设项目竣工环境保护验收监测报告》。深圳市华保科技有限公司中国国家计量认证资质认定合格证书 CMA,具备对建设项目竣工环境保护验收的资质和能力。

验收监测报告于 2025 年 06 月 27 日编制完成, 2025 年 06 月 30 日深圳先进电子材料国际创新研究院组织成立了包括项目的验收监测单位以及环保设施施工、验收、监测、质控等技术专家组成的验收工作组,根据本项目竣工环境保护验收监测报告对照《建设项目竣工环境保护验收技术规范、环评报告表

等要求进行验收,并提出验收意见。验收小组以书面形式对验收报告提出验收意见,同 意本项目通过竣工环境保护验收。

2、其他环境保护措施的实施情况

环境影响报告表中提出的除环境保护设施外的其他环境保护措施主要为环境管理, 实施情况如下:

2.1 制度措施落实情况

(1) 环保组织机构及规章制度

项目由我院自行筹建,项目的运营管理工作由我院负责,实验研发人员 80 人,未单独设置环境管理机构,由机构负责人统筹制下设兼职环境管理员 3 人,负责日常管理。

(2) 环境风险防范措施

建设项目已开展环境风险应急预案的编制,并进行备案申报。

(3) 环境监测计划

我院已按环评要求设置的环境监测计划进行监测,并保存监测数据,做好台账。

2.2 配套措施落实情况

(1) 区域削减及淘汰落后产能

本项目不涉及区域削减及落后产能。

(2) 防护距离控制及居民搬迁

根据《深圳先进电子材料国际创新研究院(二期工程)建设项目环境影响报告表》可知,项目不需设置卫生防护距离。

2.3 其他措施落实情况

项目用地不涉及林地补偿、珍惜动植物保护、区域环境整治等。

3、整改工作情况

项目整改工作主要在提出验收意见后,我院将加强设备日常维护、维持设备处于良好的运转状态:加强废水的收集与分类,确保含重金属废水委托拉运处理,不进入废水站;定期对各环保设施进行清理和维护;妥善处理各项废物;完善环境保护管理机构建设,完善各项环境保护规章制度落实情况的监督检查机制,做好各类归档、资料的归档、整理工作。

